Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocatalytic α-arylation of cyclic ketones

Abstract

The direct α-arylation of carbonyl compounds using aryl halides represents a powerful method to synthesize critical building blocks for diverse useful compounds. Numerous synthetic methods exist to forge C(sp2)–C(sp3) bonds although mild and metal-free direct α-arylation of ketones remains a challenging transformation. Here we report a green-light-mediated α-arylation of ketones from readily available aryl halides via activation of a C(sp2)–X bond (X = I, Br, Cl) and an α-carbonyl C(sp3)–H bond in a single photocatalytic cycle. This approach is characterized by its mild reaction conditions, operational simplicity and wide functional group tolerance. Importantly, the impressive outcome of the multigram photocatalytic reaction underpins the strength of this method as a potentially practical and attractive approach for scale-up industrial purposes. The utility and scope of this reaction were further demonstrated by formal syntheses of several feedstock chemicals that are commercially expensive but critical for synthesizing numerous pharmaceutical agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photoredox activation for the α-arylation of cyclic ketones.
Fig. 2: Development of the photoreducing acridiniums.
Fig. 3: Realization of a photocatalytic α-arylation of ketones.
Fig. 4: Synthetic applications.
Fig. 5: Mechanistic insight into the photoredox α-arylation of ketones.
Fig. 6: Proposed mechanistic pathways of photoredox α-arylation of ketones.

Similar content being viewed by others

Data and materials availability

All data are available in the manuscript or the supplementary materials. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2085196, 2085197, 2085198 and 2085199. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Zhao, Q., Meng, G., Nolan, S. P. & Szostak, M. N-Heterocyclic carbene complexes in C–H activation reactions. Chem. Rev. 120, 1981–2048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 117, 8977–9015 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hao, Y.-J., Hu, X.-S., Zhou, Y., Zhou, J. & Yu, J.-S. Catalytic enantioselective α-arylation of carbonyl enolates and related compounds. ACS Cat. 10, 955–993 (2020).

    Article  CAS  Google Scholar 

  5. Johansson, C. C. C. & Colacot, T. J. Metal-catalyzed α-arylation of carbonyl and related molecules: novel trends in C–C bond formation by C–H bond functionalization. Angew. Chem. Int. Ed. 49, 676–707 (2010).

    Article  CAS  Google Scholar 

  6. Hamann, B. C. & Hartwig, J. F. Palladium-catalyzed direct α-arylation of ketones. Rate acceleration by sterically hindered chelating ligands and reductive elimination from a transition metal enolate complex. J. Am. Chem. Soc. 119, 12382–12383 (1997).

    Article  CAS  Google Scholar 

  7. Palucki, M. & Buchwald, S. L. Palladium-catalyzed α-arylation of ketones. J. Am. Chem. Soc. 119, 11108–11109 (1997).

    Article  CAS  Google Scholar 

  8. Satoh, T., Kawamura, Y., Miura, M. & Nomura, M. Palladium-catalyzed regioselective mono- and diarylation reactions of 2-phenylphenols and naphthols with aryl halides. Angew. Chem. Int. Ed. 36, 1740–1742 (1997).

    Article  CAS  Google Scholar 

  9. Lloyd-Jones, G. C. Palladium-catalyzed α-arylation of esters: ideal new methodology for discovery chemistry. Angew. Chem. Int. Ed. 41, 953–956 (2002).

    Article  CAS  Google Scholar 

  10. Jia, Z. et al. An alternative to the classical α-arylation: the transfer of an intact 2-Iodoaryl from ArI(O2CCF3)2. Angew. Chem. Int. Ed. 53, 11298–11301 (2014).

    Article  CAS  Google Scholar 

  11. Zawodny, W. et al. α-Functionalisation of ketones through metal-free electrophilic activation. Angew. Chem. Int. Ed. 59, 20935–20939 (2020).

    Article  CAS  Google Scholar 

  12. An, Y. et al. Transition-metal-free α-arylation of nitroketones with diaryliodonium salts for the synthesis of tertiary α-aryl, α-nitro ketones. Chem. Commun. 55, 119–122 (2019).

    Article  CAS  Google Scholar 

  13. Jud, W., Sommer, F., Kappe, C. O. & Cantillo, D. Electrochemical α-arylation of ketones via anodic oxidation of in situ generated silyl enol ethers. J. Org. Chem. 86, 16026–16034 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, Q.-L., Gao, H., Yousufuddin, M., Ess, D. H. & Kürti, L. Aerobic, transition-metal-free, direct, and regiospecific mono-α-arylation of ketones: synthesis and mechanism by DFT calculations. J. Am. Chem. Soc. 135, 14048–14051 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, X. & Maulide, N. Sulfoxide-mediated α-arylation of carbonyl compounds. J. Am. Chem. Soc. 133, 8510–8513 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Li, J., Bauer, A., Di Mauro, G. & Maulide, N. α-Arylation of carbonyl compounds through oxidative C−C bond activation. Angew. Chem. Int. Ed. 58, 9816–9819 (2019).

    Article  CAS  Google Scholar 

  17. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen, J. D., D’Amato, E. M., Narayanam, J. M. R. & Stephenson, C. R. J. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat. Chem. 4, 854–859 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Constantin, T. et al. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoreductant. Nature 580, 76–80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagib, D. A., Scott, M. E. & MacMillan, D. W. C. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 131, 10875–10877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shih, H.-W., Vander Wal, M. N., Grange, R. L. & MacMillan, D. W. C. Enantioselective α-benzylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 132, 13600–13603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Welin, E. R., Warkentin, A. A., Conrad, J. C. & MacMillan, D. W. C. Enantioselective α-alkylation of aldehydes by photoredox organocatalysis: rapid access to pharmacophore fragments from β-cyanoaldehydes. Angew. Chem. Int. Ed. 54, 9668–9672 (2015).

    Article  CAS  Google Scholar 

  27. Capacci, A. G., Malinowski, J. T., McAlpine, N. J., Kuhne, J. & MacMillan, D. W. C. Direct, enantioselective α-alkylation of aldehydes using simple olefins. Nat. Chem. 9, 1073–1077 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, T. Q. & MacMillan, D. W. C. A metallaphotoredox strategy for the cross-electrophile coupling of α-chloro carbonyls with aryl halides. Angew. Chem. Int. Ed. 58, 14584–14588 (2019).

    Article  CAS  Google Scholar 

  29. Pandey, G., Tiwari, S. K., Budakoti, A. & Sahani, P. K. Transition-metal-free photoredox intermolecular α-arylation of ketones. Org. Chem. Front. 5, 2610–2614 (2018).

    Article  CAS  Google Scholar 

  30. Fischer, C., Kerzig, C., Zilate, B., Wenger, O. S. & Sparr, C. Modulation of acridinium organophotoredox catalysts guided by photophysical studies. ACS Cat. 10, 210–215 (2020).

    Article  CAS  Google Scholar 

  31. Vega-Peñaloza, A., Mateos, J., Companyó, X., Escudero-Casao, M. & Dell’Amico, L. A rational approach to organo-photocatalysis: novel designs and structure–property relationships. Angew. Chem. Int. Ed. 60, 1082–1097 (2021).

    Article  Google Scholar 

  32. Tlili, A. & Lakhdar, S. Acridinium salts and cyanoarenes as powerful photocatalysts: opportunities in organic synthesis. Angew. Chem. Int. Ed. 133, (2021).

  33. Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mei, L., Veleta, J. M. & Gianetti, T. L. Helical carbenium ion: a versatile organic photoredox catalyst for red-light-mediated reactions. J. Am. Chem. Soc. 142, 12056–12061 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Shaikh, A. C. et al. Persistent, highly localized, and tunable [4]helicene radicals. Chem. Sci. 11, 11060–11067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joshi-Pangu, A. et al. Acridinium-based photocatalysts: a sustainable option in photoredox catalysis. J. Org. Chem. 81, 7244–7249 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Laursen, B. W. et al. 2,6,10-Tris(dialkylamino)trioxatriangulenium Ions. Synthesis, structure, and properties of exceptionally stable carbenium ions. J. Am. Chem. Soc. 120, 12255–12263 (1998).

    Article  CAS  Google Scholar 

  38. Laursen, B. W. & Sorensen, T. J. Synthesis of super stable triangulenium dye. J. Org. Chem. 74, 3183–3185 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Li, Y., Wang, D., Zhang, L. & Luo, S. Redox property of enamines. J. Org. Chem. 84, 12071–12090 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Enemærke, R. J., Christensen, T. B., Jensen, H. & Daasbjerg, K. Application of a new kinetic method in the investigation of cleavage reactions of haloaromatic radical anions. J. Chem. Soc. Perkin Trans. 2, 1620–1630 (2001).

    Article  Google Scholar 

  41. Castro, A. C. & Evans, C. A. AHR inhibitors and uses thereof. US patent WO/2019/036657 (2019).

  42. Stork, G., Brizzolara, A., Landesman, H., Szmuszkovicz, J. & Terrell, R. The enamine alkylation and acylation of carbonyl compounds. J. Am. Chem. Soc. 85, 207–222 (1963).

    Article  CAS  Google Scholar 

  43. Crowell T. A. et al. Selective β3 adrenergic agonists. US patent US6686372B2 (2004).

  44. Salehi, B. et al. Epibatidine: a promising natural alkaloid in health. Biomolecules 9, 6 (2019).

    Article  Google Scholar 

  45. Bexrud, J. & Lautens, M. A rhodium IBiox[(−)-menthyl] complex as a highly selective catalyst for the asymmetric hydroarylation of azabicyles: an alternative route to epibatidine. Org. Lett. 12, 3160–3163 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Oliveira Filho, R. E. D. & Omori, A. T. Recent syntheses of frog alkaloid epibatidine. J. Braz. Chem. Soc. 26, 837–850 (2015).

    Google Scholar 

  47. Aggarwal, V. K. & Olofsson, B. Enantioselective α-arylation of cyclohexanones with diaryl iodonium salts: application to the synthesis of (−)-epibatidine. Angew. Chem. Int. Ed. 44, 5516–5519 (2005).

    Article  CAS  Google Scholar 

  48. Zhang, Z.-Q., Chen, T. & Zhang, F.-M. Copper-assisted direct nitration of cyclic ketones with ceric ammonium nitrate for the synthesis of tertiary α-nitro-α-substituted scaffolds. Org. Lett. 19, 1124–1127 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, X. & Toste, F. D. Direct asymmetric amination of α-branched cyclic ketones catalyzed by a chiral phosphoric acid. J. Am. Chem. Soc. 137, 3205–3208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alberati, D. et al. Design and synthesis of 4-substituted-8-(2-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one as a novel class of GlyT1 inhibitors: achieving selectivity against the μ opioid and nociceptin/orphanin FQ peptide (NOP) receptors. Bioorg. Med. Chem. Lett. 16, 4305–4310 (2005).

    Article  Google Scholar 

  51. Ceccarelli, S. M., Jolidon, S., Pinard, E. & Thomas A. W. Diaza-spiropiperidine derivatives. US patent WO/2005/068463 (2005).

  52. Boy, K. M. et al. Compounds for the reduction of beta-amyloid production. US patent US8637523B2 (2014).

  53. Boy, K. M. et al. Identification and preclinical evaluation of the bicyclic pyrimidine γ-secretase modulator BMS-932481. ACS Med. Chem. Lett. 10, 312–317 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Constantin, T., Juliá, F., Sheikh, N. S. & Leonori, D. Chem. Sci. 11, 12822–12828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shaikh, R. S., Düsel, S. J. S. & König, B. Visible-light photo-Arbuzov reaction of aryl bromides and trialkyl phosphites yielding aryl phosphonates. ACS Cat. 6, 8410–8414 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by The University of Arizona, the ACS Petroleum Research Fund under grant number 59631, and the National Science Foundation under CAREER award grant number 2144018. The purchase of the Bruker NEO 500 MHz spectrometer was supported by the National Science Foundation under grant number 1920234, and the University of Arizona. We are grateful to V. Huxter and A. Kumar for helping us with the transient absorption spectroscopy. We thank E. Tomat and C. Curtis for the spectroelectrochemical experiments. We thank A. Silswal for helping with the lifetime measurement. We also thank J. Njardarson at The University of Arizona and R.G. Bergman at the University of California, Berkeley for valuable discussions. All NMR data were collected in the NMR facility of the Department of Chemistry and Biochemistry at the University of Arizona, and we thank J. Dai and V. Kumirov for their help. We are also thankful to W. Wang and Y. Dong at The University of Arizona.

Author information

Authors and Affiliations

Authors

Contributions

T.L.G. conceived the idea and supervised the work. M.M.H. performed the synthesis of Acr 6–8, their characterization and the catalytic reaction condition optimizations. M.M.H. and A.C.S. synthesized the starting materials, performed the catalytic transformations and characterized the products formed. A.C.S. performed the lifetime measurements, and M.M.H. performed the absorption and emission measurements. J.M. conducted the cyclic voltammetry and X-ray diffraction measurements. M.M.H. and T.L.G. prepared the manuscript for publication.

Corresponding author

Correspondence to Thomas L. Gianetti.

Ethics declarations

Competing interests

T.L.G. and M.M.H. (The University of Arizona) are pursuing a provisional patent on this work. A.C.S. and J.M. declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary materials and methods, text, Figs. 1–16 and Tables 1–14.

Supplementary Data 1

Crystallographic data of acridinium 7 (CCDC 2085196).

Supplementary Data 2

Crystallographic data of acridinium 8 (CCDC 2085197).

Supplementary Data 3

Crystallographic data of compound 11 (CCDC 2085198).

Supplementary Data 4

Crystallographic data of compound 46 (CCDC 2085199).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.M., Shaikh, A.C., Moutet, J. et al. Photocatalytic α-arylation of cyclic ketones. Nat Synth 1, 147–157 (2022). https://doi.org/10.1038/s44160-021-00021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00021-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing