Reviews & Analysis

Filter By:

  • CO oxidation is an important reaction in automotive catalysis which has been extensively studied since the 1970s. In this Review, Higashi and Beniya examine the development of state-of-the-art catalysts, in particular focusing on CO oxidation pathways for single-atom and few-atom cluster catalysis.

    • Atsushi Beniya
    • Shougo Higashi
    Review Article
  • Proton exchange membrane fuel cells can efficiently provide clean power for electric vehicles, although more efficient and economic cathode catalysts are still required. This Review highlights recent breakthroughs, challenges and future research directions for Pt group metal (PGM) and PGM-free oxygen reduction catalysts.

    • Xiao Xia Wang
    • Mark T. Swihart
    • Gang Wu
    Review Article
  • Solid oxide fuel cells have been identified as a promising technology to decarbonize the transportation sector. This perspective describes recent advances in the area and identifies those crucial aspects that still require development in order to favour the practical application of this technology.

    • Paul Boldrin
    • Nigel P. Brandon
    Perspective
  • Catalysis has been crucial for the transportation sector, as it has enabled the treatment of automotive exhausts over the years in agreement with evolving environmental regulations. This review details the most important milestones in automotive catalysis, while looking at the future of the field.

    • Robert J. Farrauto
    • Michel Deeba
    • Saeed Alerasool
    Review Article
  • S-adenosylmethionine (SAM)-dependent methyltransferase enzymes have significant synthetic potential, but their utility as biocatalysts has been limited by the availability of SAM. An elegant and simple method addressing this long-standing problem has now been developed using a halide methyltransferase (HMT) enzyme for SAM regeneration in vitro.

    • Jason Micklefield
    News & Views
  • Electrochemical carbon dioxide reduction is an attractive approach for obtaining fuels and chemical feedstocks using renewable energy. In this Review, the authors describe progress so far, identify mechanistic questions and performance metrics, and discuss design principles for improved activity and selectivity.

    • Michael B. Ross
    • Phil De Luna
    • Edward H. Sargent
    Review Article
  • First-principles-based multiscale models provide mechanistic insight and allow screening of large materials spaces to find promising new catalysts. In this Review, Reuter and co-workers discuss methodological cornerstones of existing approaches and highlight successes and ongoing developments in the field.

    • Albert Bruix
    • Johannes T. Margraf
    • Karsten Reuter
    Review Article
  • Understanding the nature of active sites in carbon electrocatalysis remains a subject of dispute and a great scientific challenge. Convincing new evidence supports the fact that, for oxygen reduction, defects present in carbon materials are more powerful catalytic sites than nitrogenated sites.

    • Magdalena Titirici
    News & Views
  • Tailoring platinum-based catalysts is of great research interest in the fields of electrochemical energy conversion and storage, as well as other applications. Now, an approach has been developed to boost the activity of platinum catalysts at the atomic scale.

    • Feng Li
    • Jong-Beom Baek
    News & Views
  • Hydrogenases are very powerful biocatalysts for dihydrogen cleavage. Now, X-ray crystallography shows how [Fe]-hydrogenase requires ligand exchanges at the metal centre and significant molecular motions to open and close its active site to effectively transfer a hydride to an electrophilic organic substrate.

    • Yvain Nicolet
    News & Views
  • The biological functions of glycan motifs such as the Lewis blood antigens are often defined by their precise multivalent presentation on complex glycoconjugates, making synthesis particularly challenging. Access to a number of positionally defined Lewis motifs on natural polysaccharide scaffolds has now been achieved using bacterial glycosyltransferases.

    • Kun Huang
    • Sabine L Flitsch
    News & Views
  • A synthetic DNA enzyme catalyses the formation of a native phosphodiester bond between two RNA fragments, but the molecular details of the mechanism remained elusive. Research using computational and biochemical approaches now suggests that the DNA enzyme recruits two magnesium ions to assist in the catalysis of RNA ligation.

    • Claudia Höbartner
    News & Views
  • While converting methane to methanol is an attractive process, making a catalytic—and commercially viable—route has presented severe difficulties. Here van Bokhoven and co-workers discuss the successes, problems and misconceptions in the field, focusing on the reaction with molecular oxygen over zeolites.

    • Manoj Ravi
    • Vitaly L. Sushkevich
    • Jeroen A. van Bokhoven
    Perspective
  • Given the fact that sodium is the most abundant alkali metal on Earth, the direct and indirect use of organosodium compounds in palladium-catalysed carbon–carbon bond forming reactions is an attractive alternative for sustainable organic synthesis.

    • Henry N. C. Wong
    News & Views
  • Good durability and activity of single Ru atom catalysts is critical for their large-scale utilization in electrochemical water splitting. Now, both of these properties can be better controlled through compressive strain engineering.

    • Boon Siang Yeo
    News & Views
  • High-yield production of a functionally active mimic of particulate methane monooxygenase in Escherichia coli has been presented. Investigation of its catalytic mode clarifies the role of duroquinol in biomimetic methanol production.

    • Sunney I. Chan
    • Steve S.-F Yu
    News & Views
  • The diversity of engineered amine dehydrogenases for reductive amination remains limited. Now, native amino dehydrogenases offering a different sequence space and catalytic features are discovered — enhancing and broadening the biocatalysis toolbox.

    • Andreas S. Bommarius
    News & Views
  • CO2 hydrogenation is frequently acclaimed as a strategy for greenhouse gases mitigation, although the carbon footprint of the corresponding electrocatalytic or thermocatalytic process is often neglected. This Perspective analyses the amount of CO2 generated during methanol production for different catalytic processes and hybrid thereof.

    • Brian M. Tackett
    • Elaine Gomez
    • Jingguang G. Chen
    Perspective
  • The electrochemical reduction of nitrogen is being intensely investigated as the basis for future ammonia production. This Perspective critiques current steps and missteps towards this goal in terms of experimental methodology and catalyst selection, proposing a protocol for rigorous experimentation.

    • Bryan H. R. Suryanto
    • Hoang-Long Du
    • Douglas R. MacFarlane
    Perspective
  • The asymmetric synthesis of chiral γ-lactams is difficult and laborious; typically requiring pre-functionalization of starting materials. Now, a highly efficient alternative approach employing direct C−H amidation via chiral hydrogen-bond-donor catalysts has been developed.

    • Tong-De Tan
    • Long-Wu Ye
    News & Views