Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Progress and outlook for solid oxide fuel cells for transportation applications

With their high temperatures and brittle ceramic components, solid oxide fuel cells (SOFCs) might not seem the obvious fit for a power source for transportation applications. However, over recent years, advances in materials and cell design have begun to mitigate these issues, leading to the advantages of SOFCs such as fuel flexibility and high efficiency being exploited in vehicles. Here, we review these advances, look at the vehicles that SOFCs have already been used in, discuss the areas that need improvement for full commercial breakthrough and the ways in which catalysis can assist with these. In particular, we identify lifetime and degradation, fuel flexibility, efficiency and power density as key aspects for SOFCs’ improvement. Expertise from the catalysis landscape, ranging from surface science and computational materials design, to improvements in reforming catalysts and reformer design, are instrumental to this goal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A generalised diagram of a SOFC.
Fig. 2: Degradation modes in SOFC electrodes.
Fig. 3: Improving efficiency in SOFCs.
Fig. 4: Improving power density in SOFCs.

Similar content being viewed by others

References

  1. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  2. Dagdougui, H., Sacile, R., Bersani, C. & Ouammi, A. in Hydrogen Infrastructure for Energy Applications (eds Hanane Dagdougui, Roberto Sacile, Chiara Bersani, & Ahmed Ouammi) 23–36 (Academic Press, 2018).

  3. Leah, R. T. et al. Development of high efficiency steel cell technology for multiple applications. ECS Trans. 78, 2005–2014 (2017).

    Article  CAS  Google Scholar 

  4. Yazdanie, M., Noembrini, F., Dossetto, L. & Boulouchos, K. A comparative analysis of well-to-wheel primary energy demand and greenhouse gas emissions for the operation of alternative and conventional vehicles in Switzerland, considering various energy carrier production pathways. J. Power Sources 249, 333–348 (2014).

    Article  CAS  Google Scholar 

  5. Kim, H. C., Wallington, T. J., Arsenault, R., Bae, C., Ahn, S. & Lee, J. Cradle-to-gate emissions from a commercial electric vehicle Li-ion battery: a comparative analysis. Environ. Sci. Technol. 50, 7715–7722 (2016).

    Article  CAS  Google Scholar 

  6. Staffell, I., Ingram, A. & Kendall, K. Energy and carbon payback times for solid oxide fuel cell based domestic CHP. Int. J. Hydrog. Energy 37, 2509–2523 (2012).

    Article  CAS  Google Scholar 

  7. Jacobson, A. J. Materials for solid oxide fuel cells. Chem. Mater. 22, 660–674 (2010).

    Article  CAS  Google Scholar 

  8. Medvedev, D. A., Lyagaeva, J. G., Gorbova, E. V., Demin, A. K. & Tsiakaras, P. Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog. Mater. Sci. 75, 38–79 (2016).

    Article  CAS  Google Scholar 

  9. Bianco, M., Linder, M., Larring, Y., Greco, F. & Van herle, J. in Solid Oxide Fuel Cell Lifetime and Reliability (eds Nigel P. Brandon, Enrique Ruiz-Trejo, & Paul Boldrin) 121–144 (Academic Press, 2017).

  10. Boldrin, P., Ruiz-Trejo, E., Mermelstein, J., Bermúdez Menéndez, J. M., Ramı́rez Reina, T. & Brandon, N. P. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem. Rev. 116, 13633–13684 (2016).

    Article  CAS  Google Scholar 

  11. Brett, D. J. L. et al. Concept and system design for a ZEBRA battery–intermediate temperature solid oxide fuel cell hybrid vehicle. J. Power Sources 157, 782–798 (2006).

    Article  CAS  Google Scholar 

  12. Aguiar, P., Brett, D. J. L. & Brandon, N. P. Feasibility study and techno-economic analysis of an SOFC/battery hybrid system for vehicle applications. J. Power Sources 171, 186–197 (2007).

    Article  CAS  Google Scholar 

  13. Brett, D. J. et al. Operational experience of an IT-SOFC / battery hybrid system for automotive applications. ECS Trans. 7, 113–122 (2007).

    Article  Google Scholar 

  14. Barrett, S. (ed.) Delphi demos SOFC tech for truck APU. Fuel Cells Bull. 2010, 3 (2010).

  15. Rechberger, J., Kaupert, A., Hagerskans, J. & Blum, L. Demonstration of the first European SOFC APU on a heavy-duty truck. Transp. Res. Proc. 14, 3676–3685 (2016).

    Article  Google Scholar 

  16. Barrett, S. (ed.) Wärtsilä marine SOFC for Wallenius car-carrier. Fuel Cells Bull. 2010, 1 (2010).

  17. Nehter, P., Wildrath, B., Bauschulte, A. & Leites, K. Diesel based SOFC demonstrator for maritime applications. ECS Trans. 78, 171–180 (2017).

    Article  CAS  Google Scholar 

  18. Barrett, S. (ed.) Atrex, Ascend Energy demonstrate ATV with SOFC range-extender. Fuel Cells Bull. 2017, 3–4 (2017).

  19. Barrett, S. (ed.) Ultra Electronics USSI wins SOFC contract for UAS platforms. Fuel Cells Bull. 2018, 6–7 (2018).

  20. Leah, R. T. et al. Development progress on the Ceres power steel cell technology platform: further progress towards commercialization. ECS Trans. 78, 87–95 (2017).

    Article  CAS  Google Scholar 

  21. Barrett, S. (ed.) Ceres, Weichai plan SOFC range-extender for China bus market. Fuel Cells Bull. 2018, 10 (2018).

  22. Wood, T. & Ivey, D. G. in Solid Oxide Fuel Cell Lifetime and Reliability (eds Nigel P. Brandon, Enrique Ruiz-Trejo, & Paul Boldrin) 51–77 (Academic Press, 2017).

  23. Bertei, A. et al. The fractal nature of the three-phase boundary: a heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes. Nano Energy 38, 526–536 (2017).

    Article  CAS  Google Scholar 

  24. Aphale, A., Liang, C., Hu, B. & Singh, P. in Solid Oxide Fuel Cell Lifetime and Reliability (eds Nigel P. Brandon, Enrique Ruiz-Trejo, & Paul Boldrin) 101–119 (Academic Press, 2017).

  25. Chen, Y., Yang, L., Ren, F. & An, K. Visualizing the structural evolution of LSM/xYSZ composite cathodes for SOFC by in-situ neutron diffraction. Sci. Rep. 4, 5179 (2014).

    Article  CAS  Google Scholar 

  26. Uhlenbruck, S., Moskalewicz, T., Jordan, N., Penkalla, H. J. & Buchkremer, H. P. Element interdiffusion at electrolyte–cathode interfaces in ceramic high-temperature fuel cells. Solid State Ion. 180, 418–423 (2009).

    Article  CAS  Google Scholar 

  27. He, S. et al. A FIB-STEM study of strontium segregation and interface formation of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ cathode on Y2O3-ZrO2 electrolyte of solid oxide fuel cells. J. Electrochem. Soc. 165, F417–F429 (2018).

    Article  CAS  Google Scholar 

  28. Rinaldi, G. et al. Strontium migration at the GDC-YSZ interface of solid oxide cells in SOFC and SOEC modes. ECS Trans. 78, 3297–3307 (2017).

    Article  CAS  Google Scholar 

  29. Morales, M. et al. Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3,000 h. J. Power Sources 344, 141–151 (2017).

    Article  CAS  Google Scholar 

  30. Niania, M. et al. In situ study of strontium segregation in La0.6Sr0.4Co0.2Fe0.8O3−δ in ambient atmospheres using high-temperature environmental scanning electron microscopy. J. Mater. Chem. A 6, 14120–14135 (2018).

    Article  CAS  Google Scholar 

  31. Rupp, G. M., Opitz, A. K., Nenning, A., Limbeck, A. & Fleig, J. Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes. Nat. Mater. 16, 640 (2017).

    Article  CAS  Google Scholar 

  32. Chen, Y. et al. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline Earth metal elements. Adv. Energy Mater. 5, 1500537 (2015).

    Article  Google Scholar 

  33. Yoshikawa, M., Yamamoto, T., Yasumoto, K. & Mugikura, Y. Degradation analysis of SOFC stack performance: investigation of cathode sulfur poisoning due to contamination in air. ECS Trans. 78, 2347–2354 (2017).

    Article  CAS  Google Scholar 

  34. Wang, F. et al. Influence of water vapor on sulfur distribution within La0.6Sr0.4Co0.2Fe0.8O3 Cathode. ECS Trans. 50, 143–150 (2013).

    Article  Google Scholar 

  35. Bozlaker, A. & Chellam, S. in Trace Materials in Air, Soil, and Water Vol. 1210 ACS Symposium Series Ch. 1 (American Chemical Society, 2015).

  36. Takeguchi, T. et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. J. Power Sources 112, 588–595 (2002).

    Article  CAS  Google Scholar 

  37. Ouyang, M., Boldrin, P. & Brandon, N. P. Methane pulse study on nickel impregnated gadolinium doped ceria. ECS Trans. 78, 1353–1366 (2017).

    Article  CAS  Google Scholar 

  38. Wang, W. et al. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. ChemSusChem 7, 1719–1728 (2014).

    Article  CAS  Google Scholar 

  39. Duan, C. et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557, 217–222 (2018).

    Article  CAS  Google Scholar 

  40. Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205 (2014).

    Article  Google Scholar 

  41. Du, Z. et al. Exceptionally high performance anode material based on lattice structure decorated double perovskite Sr2FeMo2/3Mg1/3O6−δ for solid oxide fuel cells. Adv. Energy Mater. 8, 1800062 (2018).

    Article  Google Scholar 

  42. Boldrin, P., Millan-Agorio, M. & Brandon, N. P. Effect of sulfur- and tar-contaminated syngas on solid oxide fuel cell anode materials. Energ. Fuel. 29, 442–446 (2015).

    Article  CAS  Google Scholar 

  43. Connor, P. A. et al. Tailoring SOFC electrode microstructures for improved performance. Adv. Energy Mater. 8, 1800120 (2018).

    Article  Google Scholar 

  44. Boldrin, P. et al. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells. J. Mater. Chem. A 3, 3011–3018 (2015).

    Article  CAS  Google Scholar 

  45. Zhan, Z. & Barnett, S. A. An octane-fuelled solid oxide fuel cell. Science 308, 844–847 (2005).

    Article  CAS  Google Scholar 

  46. Zhao, J., Xu, X., Li, M., Zhou, W., Liu, S. & Zhu, Z. Coking-resistant Ce0.8Ni0.2O2-δ internal reforming layer for direct methane solid oxide fuel cells. Electrochim. Acta 282, 402–408 (2018).

    Article  CAS  Google Scholar 

  47. Chen, Y. et al. A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nat. Energy 3, 1042–1050 (2018).

    Article  CAS  Google Scholar 

  48. Sun, Y.-F. et al. An ingenious Ni/Ce co-doped titanate based perovskite as a coking-tolerant anode material for direct hydrocarbon solid oxide fuel cells. J. Mater. Chem. A 3, 22830–22838 (2015).

    Article  CAS  Google Scholar 

  49. Neagu, D. et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015).

    Article  Google Scholar 

  50. Barrett, S. (ed.) FCO Power develops high power density, low-cost SOFC stack. Fuel Cells Bulletin 2013, 10, (2013).

  51. Chen, Y. et al. A highly active, CO2-tolerant electrode for the oxygen reduction reaction. Energ. Environ. Sci. 11, 2458–2466 (2018).

    Article  CAS  Google Scholar 

  52. Jacobs, R., Mayeshiba, T., Booske, J. & Morgan, D. Material discovery and design principles for stable, high activity perovskite cathodes for solid oxide fuel cells. Adv. Energ. Mater. 8, 1702708 (2018).

    Article  Google Scholar 

  53. Dyer, M. S. et al. Computationally assisted identification of functional inorganic materials. Science 340, 847–852 (2013).

    Article  CAS  Google Scholar 

  54. Choi, H. J. et al. Surface tuning of solid oxide fuel cell cathode by atomic layer deposition. Adv. Energ. Mater. 8, 1802506 (2018).

    Article  Google Scholar 

  55. Develos-Bagarinao, K. et al. Multilayered LSC and GDC: An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells. Nano Energy 52, 369–380 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Boldrin.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldrin, P., Brandon, N.P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat Catal 2, 571–577 (2019). https://doi.org/10.1038/s41929-019-0310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0310-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing