Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Experience-dependent slow-wave sleep development

Abstract

Sleep enhances plasticity in neocortex, and thereby improves sensory learning1. Here we show that sleep itself undergoes changes as a consequence of waking experience during a late critical period in cats and mice. Dark-rearing produced a robust and reversible decrement of slow-wave electrical activity during sleep that was restricted to visual cortex and impaired by gene-targeted reduction of NMDA receptor function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early sensory deprivation reduces slow-wave intensity during sleep.
Figure 2: Slow-wave plasticity is region-specific, age-dependent and reversible.
Figure 3: Slow-wave activity is sensitive to cortical NMDA receptor function.

Similar content being viewed by others

References

  1. Stickgold, R., Hobson, J.A., Fosse, R. & Fosse, M. Science 294, 1052–1057 (2001).

    Article  CAS  Google Scholar 

  2. Steriade, M., McCormick, D.A. & Sejnowski, T.J. Science 262, 679–685 (1993).

    Article  CAS  Google Scholar 

  3. Mednick, S.C. et al. Nat. Neurosci. 5, 677–681 (2002).

    Article  CAS  Google Scholar 

  4. Daw, N. Visual Development (Plenum, New York, 1995).

    Book  Google Scholar 

  5. Crair, M.C., Gillespie, D.C. & Stryker, M.P. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  6. Frank, M.G., Issa, N.P. & Stryker, M.P. Neuron 30, 275–287 (2001).

    Article  CAS  Google Scholar 

  7. Jouvet-Mounier, D., Astic, L. & Lacote, D. Dev. Psychobiol. 2, 216–239 (1970).

    Article  CAS  Google Scholar 

  8. Gordon, J.A. & Stryker, M.P. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  9. Mower, G.D., Caplan, C.J., Christen, W.G. & Duffy, F.H. J. Comp. Neurol. 235, 448–466 (1985).

    Article  CAS  Google Scholar 

  10. Steigerwald, F. et al. J. Neurosci. 20, 4573–4581 (2000).

    Article  CAS  Google Scholar 

  11. Fagiolini, M. et al. Proc. Natl. Acad. Sci. USA 100, 2854–2859 (2003).

    Article  CAS  Google Scholar 

  12. Kiyama, Y. et al. J. Neurosci. 18, 6704–6712 (1998).

    Article  CAS  Google Scholar 

  13. Ito, I., Sakimura, K., Mishina, M. & Sugiyama, H. Neurosci. Lett. 203, 69–71 (1996).

    Article  CAS  Google Scholar 

  14. Kattler, H., Dijk, D.J. & Borbely, A.A. J. Sleep Res. 3, 159–164 (1994).

    Article  CAS  Google Scholar 

  15. Vyazovskiy, V., Borbely, A.A. & Tobler, I. J. Sleep Res. 9, 367–371 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Mori and M. Mishina (Univ. Tokyo) for kindly providing NR2A KO mice, S. Fujishima for animal care, and M. Fagiolini for inspirational comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Hensch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, H., Katagiri, H. & Hensch, T. Experience-dependent slow-wave sleep development. Nat Neurosci 6, 553–554 (2003). https://doi.org/10.1038/nn1064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing