Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuro-orchestration of sleep and wakefulness

Abstract

Although considered an inactive state for centuries, sleep entails many active processes occurring at the cellular, circuit and organismal levels. Over the last decade, several key technological advances, including calcium imaging and optogenetic and chemogenetic manipulations, have facilitated a detailed understanding of the functions of different neuronal populations and circuits in sleep–wake regulation. Here, we present recent progress and summarize our current understanding of the circuitry underlying the initiation, maintenance and coordination of wakefulness, rapid eye movement sleep (REMS) and non-REMS (NREMS). We propose a de-arousal model for sleep initiation, in which the neuromodulatory milieu necessary for sleep initiation is achieved by engaging in repetitive pre-sleep behaviors that gradually reduce vigilance to the external environment and wake-promoting neuromodulatory tone. We also discuss how brain processes related to thermoregulation, hunger and fear intersect with sleep–wake circuits to control arousal. Lastly, we discuss controversies and lingering questions in the sleep field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The orchestration of wakefulness.
Fig. 2: The orchestration of NREMS.
Fig. 3: The orchestration of REMS.

Similar content being viewed by others

References

  1. Bandarabadi, M., Vassalli, A. & Tafti, M. Sleep as a default state of cortical and subcortical networks. Curr. Opin. Physiol. 15, 60–67 (2020).

    Article  Google Scholar 

  2. Lee, M. G., Hassani, O. K. & Jones, B. E. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25, 6716–6720 (2005).

    Article  CAS  Google Scholar 

  3. Li, S. B. et al. Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression. Sci. Adv. 6, eabc2590 (2020).

    Article  CAS  Google Scholar 

  4. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  Google Scholar 

  5. Sasaki, K. et al. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS ONE 6, e20360 (2011).

    Article  CAS  Google Scholar 

  6. Ren, S. et al. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 362, 429–434 (2018).

    Article  CAS  Google Scholar 

  7. Feng, H. et al. Orexin signaling modulates synchronized excitation in the sublaterodorsal tegmental nucleus to stabilize REM sleep. Nat. Commun. 11, 3661 (2020).

    Article  CAS  Google Scholar 

  8. Iyer, M., Essner, R. A., Klingenberg, B. & Carter, M. E. Identification of discrete, intermingled hypocretin neuronal populations. J. Comp. Neurol. 526, 2937–2954 (2018).

    Article  CAS  Google Scholar 

  9. Herrera, C. G. et al. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat. Neurosci. 19, 290–298 (2016).

    Article  CAS  Google Scholar 

  10. Venner, A., Anaclet, C., Broadhurst, R. Y., Saper, C. B. & Fuller, P. M. A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr. Biol. 26, 2137–2143 (2016).

    Article  CAS  Google Scholar 

  11. An, S. et al. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit. Curr. Biol. 31, 1379–1392.e1374 (2021).

    Article  CAS  Google Scholar 

  12. Luo, Y. J. et al. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat. Commun. 9, 1576 (2018).

    Article  Google Scholar 

  13. Yu, X. et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat. Neurosci. 22, 106–119 (2019).

    Article  CAS  Google Scholar 

  14. Gazea, M. et al. Reciprocal lateral hypothalamic and raphe GABAergic projections promote wakefulness. J. Neurosci. 41, 4840–4849 (2021).

    Article  CAS  Google Scholar 

  15. Carter, M. E. et al. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc. Natl Acad. Sci. USA 109, E2635–2644 (2012).

    Article  CAS  Google Scholar 

  16. Venner, A. et al. An inhibitory lateral hypothalamic-preoptic circuit mediates rapid arousals from sleep. Curr. Biol. 29, 4155–4168 (2019).

    Article  CAS  Google Scholar 

  17. Fujita, A. et al. Hypothalamic tuberomammillary nucleus neurons: electrophysiological diversity and essential role in arousal stability. J. Neurosci. 37, 9574–9592 (2017).

    Article  CAS  Google Scholar 

  18. Venner, A. et al. Reassessing the role of histaminergic tuberomammillary neurons in arousal control. J. Neurosci. 39, 8929–8939 (2019).

    Article  Google Scholar 

  19. Zecharia, A. Y. et al. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J. Neurosci. 32, 13062–13075 (2012).

    Article  CAS  Google Scholar 

  20. Valko, P. O. et al. Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann. Neurol. 74, 794–804 (2013).

    Article  CAS  Google Scholar 

  21. Lee, M. G., Manns, I. D., Alonso, A. & Jones, B. E. Sleep–wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J. Neurophysiol. 92, 1182–1198 (2004).

    Article  Google Scholar 

  22. Fuller, P. M., Sherman, D., Pedersen, N. P., Saper, C. B. & Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 519, 933–956 (2011).

    Article  Google Scholar 

  23. Buzsaki, G. et al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8, 4007–4026 (1988).

    Article  CAS  Google Scholar 

  24. Han, Y. et al. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr. Biol. 24, 693–698 (2014).

    Article  CAS  Google Scholar 

  25. Xu, M. et al. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18, 1641–1647 (2015).

    Article  CAS  Google Scholar 

  26. Chen, L. et al. Basal forebrain cholinergic neurons primarily contribute to inhibition of electroencephalogram delta activity, rather than inducing behavioral wakefulness in mice. Neuropsychopharmacol. 41, 2133–2146 (2016).

    Article  CAS  Google Scholar 

  27. Kim, T. et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc. Natl Acad. Sci. USA 112, 3535–3540 (2015).

    Article  CAS  Google Scholar 

  28. Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature 441, 589–594 (2006).

    Article  CAS  Google Scholar 

  29. Luo, T. et al. Parabrachial neurons promote behavior and electroencephalographic arousal from general anesthesia. Front. Mol. Neurosci. 11, 420 (2018).

    Article  CAS  Google Scholar 

  30. Li, Y. D. et al. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol. Psych. 26, 2912–2928 (2020).

    Article  Google Scholar 

  31. Eban-Rothschild, A., Rothschild, G., Giardino, W. J., Jones, J. R. & de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat. Neurosci. 19, 1356–1366 (2016).

    Article  CAS  Google Scholar 

  32. Eban-Rothschild, A. et al. Arousal state-dependent alterations in VTA-GABAergic neuronal activity. eNeuro 7, ENEURO.0356-19.2020 (2020).

  33. Dahan, L. et al. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacol. 32, 1232–1241 (2007).

    Article  CAS  Google Scholar 

  34. Oishi, Y. et al. Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice. Brain Struct. Funct. 222, 2907–2915 (2017).

    Article  CAS  Google Scholar 

  35. Yang, S. R. et al. The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep. PLoS Biol. 16, e2002909 (2018).

    Article  Google Scholar 

  36. Blum, I. D. et al. A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal. eLife 3, 05105 (2014).

    Article  Google Scholar 

  37. Zhang, Z. et al. Superior colliculus GABAergic neurons are essential for acute dark induction of wakefulness in Mice. Curr. Biol. 29, 637–644 (2019).

    Article  CAS  Google Scholar 

  38. Yu, X. et al. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol. Psych. 26, 5213–5228 (2020).

    Article  Google Scholar 

  39. Honda, T. et al. Ablation of ventral midbrain/pons GABA neurons induces mania-like behaviors with altered sleep homeostasis and dopamine D(2)R-mediated sleep reduction. iScience 23, 101240 (2020).

    Article  CAS  Google Scholar 

  40. Oishi, Y. et al. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat. Commun. 8, 734 (2017).

    Article  Google Scholar 

  41. Aston-Jones, G. & Bloom, F. E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 876–886 (1981).

    Article  CAS  Google Scholar 

  42. Liang, Y. et al. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep. Curr. Biol. 31, 3729–3742 (2021).

    Article  CAS  Google Scholar 

  43. Burgess, C. R. & Peever, J. H. A noradrenergic mechanism functions to couple motor behavior with arousal state. Curr. Biol. 23, 1719–1725 (2013).

    Article  CAS  Google Scholar 

  44. Kjaerby, C. et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 25, 1059–1070 (2022).

    Article  CAS  Google Scholar 

  45. Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

    Article  CAS  Google Scholar 

  46. Fung, S. J., Manzoni, D., Chan, J. Y., Pompeiano, O. & Barnes, C. D. Locus coeruleus control of spinal motor output. Prog. Brain Res. 88, 395–409 (1991).

    Article  CAS  Google Scholar 

  47. Hayat, H. et al. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci. Adv. 6, eaaz4232 (2020).

    Article  CAS  Google Scholar 

  48. Osorio-Forero, A. et al. Noradrenergic circuit control of non-REM sleep substates. Curr. Biol. 31, 5009–5023 (2021).

    Article  CAS  Google Scholar 

  49. Chung, S. et al. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545, 477–481 (2017).

    Article  CAS  Google Scholar 

  50. Mondino, A. et al. Glutamatergic neurons in the preoptic hypothalamus promote wakefulness, destabilize NREM sleep, suppress REM sleep, and regulate cortical dynamics. J. Neurosci. 41, 3462–3478 (2021).

    Article  CAS  Google Scholar 

  51. Reitz, S. L., Wasilczuk, A. Z., Beh, G. H., Proekt, A. & Kelz, M. B. Activation of preoptic tachykinin 1 neurons promotes wakefulness over sleep and volatile anesthetic-induced unconsciousness. Curr. Biol. 31, 394–405 (2021).

    Article  CAS  Google Scholar 

  52. Cho, J. R. et al. Dorsal raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron 94, 1205–1219 (2017).

    Article  CAS  Google Scholar 

  53. Lu, J., Greco, M. A., Shiromani, P. & Saper, C. B. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci. 20, 3830–3842 (2000).

    Article  CAS  Google Scholar 

  54. Oikonomou, G. et al. The serotonergic raphe promote sleep in zebrafish and mice. Neuron 103, 686–701.e688 (2019).

    Article  CAS  Google Scholar 

  55. Venner, A., Broadhurst, R. Y., Sohn, L. T., Todd, W. D. & Fuller, P. M. Selective activation of serotoninergic dorsal raphe neurons facilitates sleep through anxiolysis. Sleep 43, zsz231 (2020).

    Article  Google Scholar 

  56. Poulet, J. F., Fernandez, L. M., Crochet, S. & Petersen, C. C. Thalamic control of cortical states. Nat. Neurosci. 15, 370–372 (2012).

    Article  CAS  Google Scholar 

  57. Mátyás, F. et al. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat. Neurosci. 21, 1551–1562 (2018).

    Article  Google Scholar 

  58. Honjoh, S. et al. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat. Commun. 9, 2100 (2018).

    Article  Google Scholar 

  59. Gent, T. C., Bandarabadi, M., Herrera, C. G. & Adamantidis, A. R. Thalamic dual control of sleep and wakefulness. Nat. Neurosci. 21, 974–984 (2018).

    Article  CAS  Google Scholar 

  60. Hua, R. et al. Calretinin neurons in the midline thalamus modulate starvation-induced arousal. Curr. Biol. 28, 3948–3959 (2018).

    Article  CAS  Google Scholar 

  61. Kroeger, D. et al. Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J. Neurosci. 37, 1352–1366 (2017).

    Article  CAS  Google Scholar 

  62. Xu, Q. et al. Medial parabrachial nucleus is essential in controlling wakefulness in rats. Front. Neurosci. 15, 645877 (2021).

    Article  Google Scholar 

  63. Kaur, S. et al. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J. Neurosci. 33, 7627–7640 (2013).

    Article  CAS  Google Scholar 

  64. Kaur, S. et al. A genetically defined circuit for arousal from sleep during hypercapnia. Neuron 96, 1153–1167 (2017).

    Article  CAS  Google Scholar 

  65. Qiu, M. H., Chen, M. C., Fuller, P. M. & Lu, J. Stimulation of the pontine parabrachial nucleus promotes wakefulness via extra-thalamic forebrain circuit nodes. Curr. Biol. 26, 2301–2312 (2016).

    Article  CAS  Google Scholar 

  66. Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).

    Article  CAS  Google Scholar 

  67. Irish, L. A., Kline, C. E., Gunn, H. E., Buysse, D. J. & Hall, M. H. The role of sleep hygiene in promoting public health: a review of empirical evidence. Sleep. Med. Rev. 22, 23–36 (2015).

    Article  Google Scholar 

  68. Reinhardt, K. D. Wild primate sleep: understanding sleep in an ecological context. Curr. Opin. Physiol. 15, 238–244 (2020).

    Article  Google Scholar 

  69. Sotelo, M. I. et al. Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr. Biol. 32, 806–822 (2022).

    Article  CAS  Google Scholar 

  70. Sherin, J. E., Shiromani, P. J., McCarley, R. W. & Saper, C. B. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–219 (1996).

    Article  CAS  Google Scholar 

  71. Zhang, Z. et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat. Neurosci. 18, 553–561 (2015).

    Article  CAS  Google Scholar 

  72. Harding, E. C. et al. A neuronal hub binding sleep initiation and body cooling in response to a warm external Stimulus. Curr. Biol. 28, 2263–2273 (2018).

    Article  CAS  Google Scholar 

  73. Zhang, Z. et al. An excitatory circuit in the perioculomotor midbrain for non-rem sleep control. Cell 177, 1293–1307 (2019).

    Article  CAS  Google Scholar 

  74. Ma, C. et al. Sleep regulation by neurotensinergic neurons in a thalamo-amygdala circuit. Neuron 103, 323–334 (2019).

    Article  Google Scholar 

  75. Alam, M. A., Kumar, S., McGinty, D., Alam, M. N. & Szymusiak, R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J. Neurophysiol. 111, 287–299 (2014).

    Article  CAS  Google Scholar 

  76. Vanini, G. et al. Activation of preoptic GABAergic or glutamatergic neurons modulates sleep-wake architecture, but not anesthetic state transitions. Curr. Biol. 30, 779–787 (2020).

    Article  CAS  Google Scholar 

  77. Chen, K. S. et al. A hypothalamic switch for REM and non-REM sleep. Neuron 97, 1168–1176 (2018).

    Article  CAS  Google Scholar 

  78. Suntsova, N. et al. Sleep–waking discharge patterns of median preoptic nucleus neurons in rats. J. Physiol. 543, 665–677 (2002).

    Article  CAS  Google Scholar 

  79. Yamagata, T. et al. The hypothalamic link between arousal and sleep homeostasis in mice. Proc. Natl Acad. Sci. USA 118, e2101580118 (2021).

    Article  CAS  Google Scholar 

  80. Miracca, G. et al. NMDA receptors in the lateral preoptic hypothalamus are essential for sustaining NREM and REM sleep. J. Neurosci. 42, 5389–5409 (2022).

    Article  CAS  Google Scholar 

  81. Liu, K. et al. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 548, 582–587 (2017).

    Article  CAS  Google Scholar 

  82. Morairty, S. R. et al. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc. Natl Acad. Sci. USA 110, 20272–20277 (2013).

    Article  CAS  Google Scholar 

  83. Krone, L. B. et al. A role for the cortex in sleep–wake regulation. Nat. Neurosci. 24, 1210–1215 (2021).

    Article  CAS  Google Scholar 

  84. Funk, C. M. et al. Role of somatostatin-positive cortical interneurons in the generation of sleep slow waves. J. Neurosci. 37, 9132–9148 (2017).

    Article  CAS  Google Scholar 

  85. Ni, K. M. et al. Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep. eLife 5, e10382 (2016).

    Article  Google Scholar 

  86. Yuan, X. S. et al. Striatal adenosine A(2A) receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. eLife 6, e29055 (2017).

    Article  Google Scholar 

  87. Li, R. et al. Activation of adenosine A(2A) receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology 168, 107923 (2020).

    Article  CAS  Google Scholar 

  88. Liu, D. et al. A common hub for sleep and motor control in the substantia nigra. Science 367, 440–445 (2020).

    Article  CAS  Google Scholar 

  89. Lai, Y.-Y., Kodama, T., Hsieh, K.-C., Nguyen, D. & Siegel, J. M. Substantia nigra pars reticulata-mediated sleep and motor activity regulation. Sleep 44, zsaa151 (2020).

    Article  Google Scholar 

  90. Chowdhury, S. et al. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. eLife 8, e44928 (2019).

    Article  CAS  Google Scholar 

  91. Alam, M. A. et al. Characteristics of sleep-active neurons in the medullary parafacial zone in rats. Sleep 41, zsy130 (2018).

    Article  Google Scholar 

  92. Anaclet, C. et al. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat. Neurosci. 17, 1217–1224 (2014).

    Article  CAS  Google Scholar 

  93. Zhong, P. et al. Control of non-REM sleep by midbrain neurotensinergic neurons. Neuron 104, 795–809 (2019).

    Article  CAS  Google Scholar 

  94. Kashiwagi, M. et al. Widely distributed neurotensinergic neurons in the brainstem regulate NREM sleep in mice. Curr. Biol. 30, 1002–1010 (2020).

    Article  CAS  Google Scholar 

  95. Uchida, S. et al. A discrete glycinergic neuronal population in the ventromedial medulla that induces muscle atonia during rem sleep and cataplexy in mice. J. Neurosci. 41, 1582–1596 (2021).

    Article  CAS  Google Scholar 

  96. Valencia Garcia, S. et al. Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Nat. Commun. 9, 504 (2018).

    Article  Google Scholar 

  97. Weber, F. et al. Regulation of REM and non-REM sleep by periaqueductal GABAergic neurons. Nat. Commun. 9, 354 (2018).

    Article  Google Scholar 

  98. Clément, O. et al. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J. Neurosci. 32, 16763–16774 (2012).

    Article  Google Scholar 

  99. Hayashi, Y. et al. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 350, 957–961 (2015).

    Article  CAS  Google Scholar 

  100. Kroeger, D., Bandaru, S. S., Madara, J. C. & Vetrivelan, R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience 406, 314–324 (2019).

    Article  CAS  Google Scholar 

  101. Sapin, E. et al. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS ONE 4, e4272 (2009).

    Article  Google Scholar 

  102. Weber, F. et al. Control of REM sleep by ventral medulla GABAergic neurons. Nature 526, 435–438 (2015).

    Article  CAS  Google Scholar 

  103. Szymusiak, R., Alam, N., Steininger, T. L. & McGinty, D. Sleep–waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res. 803, 178–188 (1998).

    Article  CAS  Google Scholar 

  104. Williams, J. A. & Reiner, P. B. Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J. Neurosci. 13, 3878–3883 (1993).

    Article  CAS  Google Scholar 

  105. Monti, J. M. & Jantos, H. Effects of the 5-HT1A receptor ligands flesinoxan and WAY 100635 given systemically or microinjected into the laterodorsal tegmental nucleus on REM sleep in the rat. Behavioural Brain Res. 151, 159–166 (2004).

    Article  CAS  Google Scholar 

  106. Cox, J., Pinto, L. & Dan, Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat. Commun. 7, 10763 (2016).

    Article  CAS  Google Scholar 

  107. Boucetta, S., Cissé, Y., Mainville, L., Morales, M. & Jones, B. E. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J. Neurosci. 34, 4708–4727 (2014).

    Article  Google Scholar 

  108. Boissard, R. et al. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur. J. Neurosci. 16, 1959–1973 (2002).

    Article  Google Scholar 

  109. Clément, O. et al. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study. PLoS ONE 9, e96851 (2014).

    Article  Google Scholar 

  110. Kaur, S., Saxena, R. N. & Mallick, B. N. GABAergic neurons in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats. Synapse 42, 141–150 (2001).

    Article  CAS  Google Scholar 

  111. Goutagny, R. et al. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience 152, 849–857 (2008).

    Article  CAS  Google Scholar 

  112. Stucynski, J. A., Schott, A. L., Baik, J., Chung, S. & Weber, F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr. Biol. 32, 37–50 (2022).

    Article  CAS  Google Scholar 

  113. Bandarabadi, M. et al. A role for spindles in the onset of rapid eye movement sleep. Nat. Commun. 11, 5247 (2020).

    Article  CAS  Google Scholar 

  114. Hassani, O. K., Lee, M. G. & Jones, B. E. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc. Natl Acad. Sci. USA 106, 2418–2422 (2009).

    Article  CAS  Google Scholar 

  115. Hassani, O. K., Henny, P., Lee, M. G. & Jones, B. E. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur. J. Neurosci. 32, 448–457 (2010).

    Article  Google Scholar 

  116. Verret, L. et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 4, 19 (2003).

    Article  Google Scholar 

  117. Blanco-Centurion, C., Luo, S., Vidal-Ortiz, A., Swank, C. & Shiromani, P. J. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 44, zsaa268 (2021).

    Article  Google Scholar 

  118. Jego, S. et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16, 1637–1643 (2013).

    Article  CAS  Google Scholar 

  119. Tsunematsu, T. et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J. Neurosci. 34, 6896–6909 (2014).

    Article  CAS  Google Scholar 

  120. Varin, C., Luppi, P. H. & Fort, P. Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep 41, zsy068 (2018).

    Article  Google Scholar 

  121. Hasegawa, E. et al. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science 375, 994–1000 (2022).

    Article  CAS  Google Scholar 

  122. Steriade, M., Datta, S., Pare, D., Oakson, G. & Curro Dossi, R. C. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 10, 2541–2559 (1990).

    Article  CAS  Google Scholar 

  123. Grace, K. P., Vanstone, L. E. & Horner, R. L. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur. J. Neurosci. 34, 14198–14209 (2014).

    Article  CAS  Google Scholar 

  124. Van Dort, C. J. et al. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc. Natl Acad. Sci. USA 112, 584–589 (2015).

    Article  Google Scholar 

  125. Kumar Yadav, R. & Mallick, B. N. Dopaminergic- and cholinergic-inputs from substantia nigra and pedunculo-pontine tegmentum, respectively, converge in amygdala to modulate rapid eye movement sleep in rats. Neuropharmacology 193, 108607 (2021).

    Article  CAS  Google Scholar 

  126. Shouse, M. N. & Siegel, J. M. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res. 571, 50–63 (1992).

    Article  CAS  Google Scholar 

  127. Torontali, Z. A., Fraigne, J. J., Sanghera, P., Horner, R. & Peever, J. The sublaterodorsal tegmental nucleus functions to couple brain state and motor activity during REM Sleep and wakefulness. Curr. Biol. 29, 3803–3813 (2019).

    Article  CAS  Google Scholar 

  128. Krenzer, M. et al. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS ONE 6, e24998 (2011).

    Article  CAS  Google Scholar 

  129. Kawamura, H. & Sawyer, C. H. Elevation in brain temperature during paradoxical sleep. Science 150, 912–913 (1965).

    Article  CAS  Google Scholar 

  130. Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T. F. & Varga, V. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J. Neurosci. 29, 8094–8102 (2009).

    Article  CAS  Google Scholar 

  131. Boyce, R., Glasgow, S. D., Williams, S. & Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352, 812–816 (2016).

    Article  CAS  Google Scholar 

  132. Anaclet, C. et al. Basal forebrain control of wakefulness and cortical rhythms. Nat. Commun. 6, 8744 (2015).

    Article  CAS  Google Scholar 

  133. Renouard, L. et al. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci. Adv. 1, e1400177 (2015).

    Article  Google Scholar 

  134. Maciel, R. et al. Is REM sleep a paradoxical state?: different neurons are activated in the cingulate cortices and the claustrum during wakefulness and paradoxical sleep hypersomnia. Biochem. Pharmacol. 191, 114514 (2021).

    Article  CAS  Google Scholar 

  135. Pompeiano, O. in Progress in Brain Research Vol. 37 (eds Brodal, A. & Pompeiano, O.) 601–618 (Elsevier, 1972).

  136. Gutierrez Herrera, C. et al. Neurons in the nucleus papilio contribute to the control of eye movements during REM sleep. Nat. Commun. 10, 5225 (2019).

    Article  CAS  Google Scholar 

  137. Cissé, Y. et al. Discharge and role of acetylcholine pontomesencephalic neurons in cortical activity and sleep–wake states examined by optogenetics and juxtacellular recording in mice. eNeuro 5, ENEURO.0270-18.2018 (2018).

  138. Cissé, Y. et al. Discharge and role of GABA pontomesencephalic neurons in cortical activity and sleep-wake states examined by optogenetics and juxtacellular recordings in Mice. J. Neurosci. 40, 5970–5989 (2020).

    Article  Google Scholar 

  139. Karlsson, K. A., Gall, A. J., Mohns, E. J., Seelke, A. M. & Blumberg, M. S. The neural substrates of infant sleep in rats. PLoS Biol. 3, e143 (2005).

    Article  Google Scholar 

  140. Del Rio-Bermudez, C., Sokoloff, G. & Blumberg, M. S. Sensorimotor processing in the newborn rat red nucleus during active sleep. J. Neurosci. 35, 8322–8332 (2015).

    Article  Google Scholar 

  141. Mileykovskiy, B. Y., Kiyashchenko, L. I. & Siegel, J. M. Cessation of activity in red nucleus neurons during stimulation of the medial medulla in decerebrate rats. J. Physiol. 545, 997–1006 (2002).

    Article  CAS  Google Scholar 

  142. Burgess, C., Lai, D., Siegel, J. & Peever, J. An endogenous glutamatergic drive onto somatic motoneurons contributes to the stereotypical pattern of muscle tone across the sleep–wake cycle. J. Neurosci. 28, 4649–4660 (2008).

    Article  CAS  Google Scholar 

  143. Beak, S. K., Hong, E. Y. & Lee, H. S. Collateral projection from the forebrain and mesopontine cholinergic neurons to whisker-related, sensory and motor regions of the rat. Brain Res. 1336, 30–45 (2010).

    Article  CAS  Google Scholar 

  144. Nelson, J. P., McCarley, R. W. & Hobson, J. A. REM sleep burst neurons, PGO waves, and eye movement information. J. Neurophysiol. 50, 784–797 (1983).

    Article  CAS  Google Scholar 

  145. Webster, H. H. & Jones, B. E. Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res. 458, 285–302 (1988).

    Article  CAS  Google Scholar 

  146. Datta, S., Siwek, D. F., Patterson, E. H. & Cipolloni, P. B. Localization of pontine PGO wave generation sites and their anatomical projections in the rat. Synapse 30, 409–423 (1998).

    Article  CAS  Google Scholar 

  147. Dergacheva, O., Wang, X., Lovett-Barr, M. R., Jameson, H. & Mendelowitz, D. The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: a mechanism for rapid eye movement sleep-dependent changes in heart rate. J. Neurophysiol. 104, 685–694 (2010).

    Article  Google Scholar 

  148. Goldstein, N. et al. Hypothalamic neurons that regulate feeding can influence sleep/wake states based on homeostatic need. Curr. Biol. 28, 3736–3747 (2018).

    Article  CAS  Google Scholar 

  149. Barbano, M. F. et al. VTA glutamatergic neurons mediate innate defensive behaviors. Neuron 107, 368–382.e8 (2020).

    Article  CAS  Google Scholar 

  150. Tseng, Y.-T. et al. The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron 110, 1223–1239 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize that, owing to a limit on the number of references, primary papers could not be cited in some cases. Work in the Eban-Rothschild lab is supported by grants from the National Institutes of Health (1RF1MH120005-01 and R01 MH063649-17) and the Neuroscience Scholar Research Award (UM). B.A.S. is supported by the Rackham Regents Fellowship (UM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada Eban-Rothschild.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks John Peever and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaman, B.A., Wang, S., Tyan, J. et al. Neuro-orchestration of sleep and wakefulness. Nat Neurosci 26, 196–212 (2023). https://doi.org/10.1038/s41593-022-01236-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01236-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing