Collection |

Battery materials and technologies

Advances in battery technology are enabling the transformation of existing applications and the realization of new devices, from wearable medical devices and portable electronics to electric vehicles and grid-scale energy storage. For many of these technologies, the need remains for increased energy densities and durability, higher safety and lower cost, whereas for others, factors such as miniaturization, flexibility and conformability are crucial. Through advances in materials science, tremendous progress is being made in addressing these requirements. This Collection showcases some of the most promising next-generation battery systems, and the materials and computational models that make them possible. 

Reviews

This Review details recent advances in battery chemistries and systems enabled by solid electrolytes, including all-solid-state lithium-ion, lithium–air, lithium–sulfur and lithium–bromine batteries, as well as an aqueous battery concept with a mediator-ion solid electrolyte.

Review Article | | Nature Reviews Materials

Ionic liquids and their solid-state analogues, organic ionic plastic crystals, have recently emerged as important materials for renewable energy applications. This Review highlights recent advances in the synthesis of these materials and their application as electrolytes for batteries, capacitors, photovoltaics, fuel cells and CO2 reduction.

Review Article | | Nature Reviews Materials

More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

Review Article | | Nature Reviews Materials

Mesoporous materials are finding increasing uses in energy conversion and storage devices. This Review highlights recent developments in the synthesis of mesoporous materials and their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.

Review Article | | Nature Reviews Materials

Graphene has now enabled the development of faster and more powerful batteries and supercapacitors. In this Review, we discuss the current status of graphene in energy storage, highlight ongoing research activities and present some solutions for existing challenges.

Review Article | | Nature Reviews Materials