Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Promise and reality of post-lithium-ion batteries with high energy densities

Subjects

Abstract

Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead–acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three representative commercial cell structures.
Figure 2: Electrode structures and binder designs for Si anodes.
Figure 3: Structures and electrochemical voltage profiles of advanced layered cathode materials.
Figure 4: Failure and remedies of Li-metal anodes.
Figure 5: Various sulfur cathodes in Li–S batteries.
Figure 6: Representative metal–oxygen batteries.
Figure 7: Operation voltages versus specific capacities of sodium-ion battery and magnesium battery electrode materials.

References

  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  2. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    CAS  Google Scholar 

  3. International Energy Agency. Global EV outlook. Understanding the electric vehicle landscape to 2020 (IEA, 2013).

  4. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Google Scholar 

  5. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). The operating principles, advantages and remaining issues of Li–S and Li–O2 batteries are comprehensively reviewed in this article.

    CAS  Google Scholar 

  6. Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).

    CAS  Google Scholar 

  7. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    CAS  Google Scholar 

  8. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    CAS  Google Scholar 

  9. Thackeray, M. M., Wolverton, C. & Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012).

    CAS  Google Scholar 

  10. Duduta, M. et al. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511–516 (2011).

    CAS  Google Scholar 

  11. Howard, W. F. & Spotnitz, R. M. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J. Power Sources 165, 887–891 (2007).

    CAS  Google Scholar 

  12. Yazami, R. & Touzain, P. A reversible graphite–lithium negative electrode for electrochemical generators. J. Power Sources 9, 365–371 (1983).

    CAS  Google Scholar 

  13. Winter, M., Besenhard, J. O., Spahr, M. E. & Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998).

    CAS  Google Scholar 

  14. Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 8182, 13–19 (1999).

    Google Scholar 

  15. Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137–A140 (2001).

    CAS  Google Scholar 

  16. Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012). In this article, issues originating from the volume expansion of Si active materials and the solutions based on nanostructural designs are discussed.

    CAS  Google Scholar 

  17. McDowell, M. T., Lee, S. W., Nix, W. D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013).

    CAS  Google Scholar 

  18. Nelson, P. A. et al. High-performance batteries for off-peak energy storage and electric-vehicle propulsion, progress report. (Argonne National Laboratory, 1976).

  19. Sharma, R. A. & Seefurth, R. N. Thermodynamic properties of the lithium–silicon system. J. Electrochem. Soc. 123, 1763–1768 (1976).

    CAS  Google Scholar 

  20. Seefurth, R. N. & Sharma, R. A. Investigation of lithium utilization from a lithium–silicon electrode. J. Electrochem. Soc. 124, 1207–1214 (1977).

    CAS  Google Scholar 

  21. Wilson, A. M. & Dahn, J. R. Lithium insertion in carbons containing nanodispersed silicon. J. Electrochem. Soc. 142, 326–332 (1995).

    CAS  Google Scholar 

  22. Yu, Y. et al. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247–2250 (2010).

    CAS  Google Scholar 

  23. Hwang, T. H., Lee, Y. M., Kong, B.-S., Seo, J.-S. & Choi, J. W. Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012).

    CAS  Google Scholar 

  24. Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012).

    CAS  Google Scholar 

  25. Jung, D. S., Hwang, T. H., Park, S. B. & Choi, J. W. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 13, 2092–2097 (2013).

    CAS  Google Scholar 

  26. Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015).

    CAS  Google Scholar 

  27. Koo, B. et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. Engl. 51, 8762–8767 (2012).

    CAS  Google Scholar 

  28. Kwon, T.-w. et al. Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 26, 7979–7985 (2014).

    CAS  Google Scholar 

  29. Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

    CAS  Google Scholar 

  30. Chen, Z. et al. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 5, 1401826 (2015).

    Google Scholar 

  31. Li, J., Lewis, R. B. & Dahn, J. R. Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17–A20 (2007).

    CAS  Google Scholar 

  32. Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

    CAS  Google Scholar 

  33. Murase, M. et al. Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. ChemSusChem 5, 2307–2311 (2012).

    CAS  Google Scholar 

  34. Jeong, Y. K. et al. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 14, 864–870 (2014).

    CAS  Google Scholar 

  35. Jeong, Y. K. et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 8, 1224–1230 (2015).

    CAS  Google Scholar 

  36. Liu, G. et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679–4683 (2011).

    CAS  Google Scholar 

  37. Wu, H. et al. Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).

    Google Scholar 

  38. Erickson, E. M. et al. Review — development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions. J. Electrochem. Soc. 162, A2424–A2438 (2015).

    CAS  Google Scholar 

  39. Etacheri, V. et al. Exceptional electrochemical performance of Si nanowires in 1,3-dioxolane solutions: a surface chemical investigation. Langmuir 28, 6175–6184 (2012).

    CAS  Google Scholar 

  40. Markevich, E. et al. Amorphous columnar silicon anodes for advanced high voltage lithium ion full cells: dominant factors governing cycling performance. J. Electrochem. Soc. 160, A1824–A1833 (2013).

    CAS  Google Scholar 

  41. Markevich, E. et al. High performance of thick amorphous columnar monolithic film silicon anodes in ionic liquid electrolytes at elevated temperature. RSC Adv. 4, 48572–48575 (2014).

    CAS  Google Scholar 

  42. Fukuoka, H., Aramata, M. & Miyawaki, S. Method for producing SiOx (x < 1). US Patent 0254102 (2007).

  43. DeWet Erasmus, H. & Persson, J. A. Preparation and properties of silicon monoxide. J. Electrochem. Soc. 95, 316–318 (1949).

    Google Scholar 

  44. Park, E. et al. Dual-size silicon nanocrystal-embedded SiOx nanocomposite as a high-capacity lithium storage material. ACS Nano 9, 7690–7696 (2015).

    CAS  Google Scholar 

  45. Doh, C.-H. et al. A new SiO/C anode composition for lithium-ion battery. J. Power Sources 179, 367–370 (2008).

    CAS  Google Scholar 

  46. Zhao, J. et al. Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 5, 5088 (2014).

    CAS  Google Scholar 

  47. Liu, N., Hu, L., McDowell, M. T., Jackson, A. & Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487–6493 (2011).

    CAS  Google Scholar 

  48. Kim, H. J. et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 16, 282–288 (2015).

    Google Scholar 

  49. Miyachi, M., Yamamoto, H., Kawai, H., Ohta, T. & Shirakata, M. Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc. 152, A2089–A2091 (2005).

    CAS  Google Scholar 

  50. Komaba, S. et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J. Phys. Chem. C 115, 13487–13495 (2011).

    CAS  Google Scholar 

  51. Rossen, E., Jones, C. D. W. & Dahn, J. R. Structure and electrochemistry of LixMnyNi1−yO2 . Solid State Ionics 57, 311–318 (1992).

    CAS  Google Scholar 

  52. Rossouw, M. H., Liles, D. C. & Thackeray, M. M. Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2 . J. Solid State Chem. 104, 464–466 (1993).

    CAS  Google Scholar 

  53. Chikkannanavar, S. B., Bernardi, D. M. & Liu, L. A review of blended cathode materials for use in Li-ion batteries. J. Power Sources 248, 91–100 (2014).

    CAS  Google Scholar 

  54. Jung, S.-K. et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 4, 1300787 (2014).

    Google Scholar 

  55. Chen, C. H. et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 128, 278–285 (2004).

    CAS  Google Scholar 

  56. Manthiram, A., Knight, J. C., Myung, S.-T., Oh, S.-M. & Sun, Y.-K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2015). This article addresses key challenges in the synthesis and battery operation of high-capacity layered oxide cathodes and outlines future research directions.

    Google Scholar 

  57. Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 54, 4440–4457 (2015).

    CAS  Google Scholar 

  58. Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Google Scholar 

  59. Johnson, C. S., Li, N., Lefief, C., Vaughey, J. T. & Thackeray, M. M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1−x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 20, 6095–6106 (2008).

    CAS  Google Scholar 

  60. Lee, K.-S., Myung, S.-T., Amine, K., Yashiro, H. & Sun, Y.-K. Structural and electrochemical properties of layered Li[Ni1−2 x CoxMnx]O2 (x = 0.1–0.3) positive electrode materials for Li-ion batteries. J. Electrochem. Soc. 154, A971–A977 (2007).

    CAS  Google Scholar 

  61. Nayak, P. K., Grinblat, J., Levi, M., Markovsky, B. & Aurbach, D. Structural and electrochemical evidence of layered to spinel phase transformation of Li and Mn rich layered cathode materials of the formulae xLi[Li1/3Mn2/3]O2·(1−x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon cycling. J. Electrochem. Soc. 161, A1534–A1547 (2014).

    CAS  Google Scholar 

  62. Haik, O. et al. On the surface chemistry of LiMO2 cathode materials (M = [MnNi] and [MnNiCo]): electrochemical, spectroscopic, and calorimetric studies. J. Electrochem. Soc. 157, A1099–A1107 (2010).

    CAS  Google Scholar 

  63. Kam, K. C., Mehta, A., Heron, J. T. & Doeff, M. M. Electrochemical and physical properties of Ti-substituted layered nickel manganese cobalt oxide (NMC) cathode materials. J. Electrochem. Soc. 159, A1383–A1392 (2012).

    CAS  Google Scholar 

  64. Karan, N. et al. Structural characteristics and electrochemical performance of layered Li[Mn0.5−xCr2xNi0.5−x]O2 cathode materials. J. Power Sources 187, 586–590 (2009).

    CAS  Google Scholar 

  65. Kim, J. & Amine, K. A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1− xMxO2 (M = Cu2+, Al3+ and Ti4+). J. Power Sources 104, 33–39 (2002).

    CAS  Google Scholar 

  66. Kim, H.-B. et al. Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells. J. Power Sources 179, 347–350 (2008).

    CAS  Google Scholar 

  67. West, W. et al. Electrochemical behavior of layered solid solution Li2MnO3−LiMO2 (M = Ni, Mn, Co) Li-ion cathodes with and without alumina coatings. J. Electrochem. Soc. 158, A883–A889 (2011).

    CAS  Google Scholar 

  68. Zhang, X. et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 3, 1299–1307 (2013).

    CAS  Google Scholar 

  69. Cho, J., Kim, H. & Park, B. Comparison of overcharge behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells. J. Electrochem. Soc. 151, A1707–A1711 (2004).

    CAS  Google Scholar 

  70. Ma, X., Wang, C., Han, X. & Sun, J. Effect of AlPO4 coating on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J. Alloys Compd. 453, 352–355 (2008).

    CAS  Google Scholar 

  71. Liu, J., Wang, Q., Reeja-Jayan, B. & Manthiram, A. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem. Commun. 12, 750–753 (2010).

    CAS  Google Scholar 

  72. Chen, Y., Zhang, Y., Chen, B., Wang, Z. & Lu, C. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J. Power Sources 256, 20–27 (2014).

    CAS  Google Scholar 

  73. Zheng, J., Li, J., Zhang, Z., Guo, X. & Yang, Y. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179, 1794–1799 (2008).

    CAS  Google Scholar 

  74. Cho, Y., Lee, S., Lee, Y., Hong, T. & Cho, J. Spinel-layered core–shell cathode materials for Li-ion batteries. Adv. Energy Mater. 1, 821–828 (2011).

    CAS  Google Scholar 

  75. Wu, F. et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 14, 3550–3555 (2014).

    CAS  Google Scholar 

  76. Sun, Y.-K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    CAS  Google Scholar 

  77. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    CAS  Google Scholar 

  78. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).

    CAS  Google Scholar 

  79. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). The factors that affect undesirable dendrite growth and poor Coulombic efficiency in Li-metal anodes are summarized in this article, along with recent developments to mitigate the problem.

    CAS  Google Scholar 

  80. Aurbach, D., Zinigrad, E., Teller, H. & Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 147, 1274–1279 (2000).

    CAS  Google Scholar 

  81. Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997).

    CAS  Google Scholar 

  82. Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    CAS  Google Scholar 

  83. Lee, H., Lee, D. J., Kim, Y.-J., Park, J.-K. & Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103–108 (2015).

    CAS  Google Scholar 

  84. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014).

    CAS  Google Scholar 

  85. Kim, J.-S., Kim, D. W., Jung, H. T. & Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780–2787 (2015).

    CAS  Google Scholar 

  86. Ryou, M.-H. et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645–650 (2012).

    CAS  Google Scholar 

  87. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    CAS  Google Scholar 

  88. Aurbach, D. et al. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 50, 247–254 (2004).

    CAS  Google Scholar 

  89. Ota, H., Shima, K., Ue, M. & Yamaki, J.-i. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565–572 (2004).

    CAS  Google Scholar 

  90. Lee, Y. M. et al. Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery. Electrochem. Solid State Lett. 10, A216–A219 (2007).

    CAS  Google Scholar 

  91. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    CAS  Google Scholar 

  92. Ryou, M.-H., Lee, Y. M., Lee, Y., Winter, M. & Bieker, P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015).

    CAS  Google Scholar 

  93. Lee, J. H. et al. Effect of lithium powder size on the performance of lithium-powder/lithium trivanadate secondary batteries shown via impedance analysis. Electrochim. Acta 131, 202–206 (2014).

    CAS  Google Scholar 

  94. Rao, M. L. B. Organic electrolyte cells. US Patent 3413154 (1968).

  95. Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. Lithium-dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979).

    CAS  Google Scholar 

  96. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

    CAS  Google Scholar 

  97. Elazari, R. et al. Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy. J. Electrochem. Soc. 157, A1131–A1138 (2010).

    CAS  Google Scholar 

  98. Ji, X. & Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010).

    CAS  Google Scholar 

  99. Yin, Y.-X., Xin, S., Guo, Y.-G. & Wan, L.-J. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. Engl. 52, 13186–13200 (2013).

    CAS  Google Scholar 

  100. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    CAS  Google Scholar 

  101. Elazari, R., Salitra, G., Garsuch, A., Panchenko, A. & Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv. Mater. 23, 5641–5644 (2011).

    CAS  Google Scholar 

  102. Evers, S., Yim, T. & Nazar, L. F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J. Phys. Chem. C 116, 19653–19658 (2012).

    CAS  Google Scholar 

  103. Song, J. et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014).

    CAS  Google Scholar 

  104. Xin, S. et al. Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012).

    CAS  Google Scholar 

  105. Kim, J.-S., Hwang, T. H., Kim, B. G., Min, J. & Choi, J. W. A lithium–sulfur battery with a high areal energy density. Adv. Funct. Mater. 24, 5359–5367 (2014).

    CAS  Google Scholar 

  106. Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

    CAS  Google Scholar 

  107. Nagao, M., Hayashi, A. & Tatsumisago, M. Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol. 1, 186–192 (2013).

    CAS  Google Scholar 

  108. Machida, N., Kobayashi, K., Nishikawa, Y. & Shigematsu, T. Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ionics 175, 247–250 (2004).

    CAS  Google Scholar 

  109. Kinoshita, S., Okuda, K., Machida, N., Naito, M. & Sigematsu, T. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ionics 256, 97–102 (2014).

    CAS  Google Scholar 

  110. Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621–625 (2008).

    CAS  Google Scholar 

  111. Unemoto, A. et al. Development of bulk-type all-solid-state lithium–sulfur battery using LiBH4 electrolyte. Appl. Phys. Lett. 105, 083901 (2014).

    Google Scholar 

  112. Marmorstein, D. et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000).

    CAS  Google Scholar 

  113. Ryu, H.-S., Ahn, H.-J., Kim, K.-W., Ahn, J.-H. & Lee, J.-Y. Discharge process of Li/PVdF/S cells at room temperature. J. Power Sources 153, 360–364 (2006).

    CAS  Google Scholar 

  114. Choi, J. W. et al. Microporous poly(vinylidene fluoride-co-hexafluoropropylene) polymer electrolytes for lithium/sulfur cells. J. Ind. Eng. Chem. 12, 939–949 (2006).

    CAS  Google Scholar 

  115. Rao, M., Geng, X., Li, X., Hu, S. & Li, W. Lithium–sulfur cell with combining carbon nanofibers–sulfur cathode and gel polymer electrolyte. J. Power Sources 212, 179–185 (2012).

    CAS  Google Scholar 

  116. Koh, J. Y. et al. Electrochemical reduction mechanism of sulfur particles electrically isolated from carbon cathodes of lithium–sulfur cells. J. Electrochem. Soc. 161, A2117–A2120 (2014).

    CAS  Google Scholar 

  117. Markevich, E. et al. The effect of a solid electrolyte interphase on the mechanism of operation of lithium–sulfur batteries. J. Mater. Chem. A 3, 19873–19883 (2015).

    CAS  Google Scholar 

  118. Markevich, E. et al. Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries. Electrochem. Commun. 60, 42–46 (2015).

    CAS  Google Scholar 

  119. Yuan, Z. et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24, 6105–6112 (2014).

    CAS  Google Scholar 

  120. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  121. Li, Y. & Dai, H. Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014). Detailed effects of cell components in primary and secondary Zn–air batteries on the electrochemical performance are discussed in this article, focusing on the cells' operation principles, technical issues and potential solutions.

    CAS  Google Scholar 

  122. Palmer, N. J. Secondary metal/air cell. US Patent 3650837 (1972).

  123. Shao, Y. et al. Making Li–air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987–1004 (2013).

    CAS  Google Scholar 

  124. Hasegawa, S. et al. Study on lithium/air secondary batteries — stability of NASICON-type lithium ion conducting glass–ceramics with water. J. Power Sources 189, 371–377 (2009).

    CAS  Google Scholar 

  125. Visco, S. et al. Aqueous and nonaqueous lithium–air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014).

    CAS  Google Scholar 

  126. Zhang, T. et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J. Electrochem. Soc. 155, A965–A969 (2008).

    CAS  Google Scholar 

  127. Visco, S. J., Katz, B. D., Nimon, Y. S. & De Jonghe, L. C. Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US Patent 7282295 (2007).

  128. Kim, B. G. et al. Improved reversibility in lithium–oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst. Sci. Rep. 4, 4225 (2014).

    Google Scholar 

  129. Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. Engl. 50, 8609–8613 (2011).

    CAS  Google Scholar 

  130. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).

    CAS  Google Scholar 

  131. Kim, B. G., Kim, S., Lee, H. & Choi, J. W. Wisdom from the human eye: a synthetic melanin radical scavenger for improved cycle life of Li–O2 battery. Chem. Mater. 26, 4757–4764 (2014).

    CAS  Google Scholar 

  132. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 337, 563–566 (2012).

    CAS  Google Scholar 

  133. Harding, J. R., Lu, Y.-C., Tsukada, Y. & Shao-Horn, Y. Evidence of catalyzed oxidation of Li2O2 for rechargeable Li–air battery applications. Phys. Chem. Chem. Phys. 14, 10540–10546 (2012).

    CAS  Google Scholar 

  134. Li, F. et al. Ru/ITO: a carbon-free cathode for nonaqueous Li–O2 battery. Nano Lett. 13, 4702–4707 (2013).

    Google Scholar 

  135. Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium–oxygen batteries. Nat. Commun. 4, 2383 (2013).

    Google Scholar 

  136. Débart, A., Paterson, A. J., Bao, J. & Bruce, P. G. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. Engl. 47, 4521–4524 (2008).

    Google Scholar 

  137. Black, R., Lee, J.-H., Adams, B., Mims, C. A. & Nazar, L. F. The role of catalysts and peroxide oxidation in lithium–oxygen batteries. Angew. Chem. Int. Ed. Engl. 52, 392–396 (2013).

    CAS  Google Scholar 

  138. Shang, C. et al. Compatible interface design of CoO-based Li–O2 battery cathodes with long-cycling stability. Sci. Rep. 5, 8335 (2015).

    CAS  Google Scholar 

  139. McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    CAS  Google Scholar 

  140. Grande, L. et al. The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27, 784–800 (2015).

    CAS  Google Scholar 

  141. Adams, B. D. et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013).

    CAS  Google Scholar 

  142. Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Google Scholar 

  143. Lim, H.-D. et al. Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. Engl. 53, 3926–3931 (2014).

    CAS  Google Scholar 

  144. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    CAS  Google Scholar 

  145. Xu, D. Wang, Z.-l., Xu, J.-j., Zhang, L.-l. & Zhang, X.-b. Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries. Chem. Commun. 48, 6948–6950 (2012).

    CAS  Google Scholar 

  146. Sharon, D. et al. On the challenge of electrolyte solutions for Li–air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J. Phys. Chem. Lett. 4, 127–131 (2013).

    CAS  Google Scholar 

  147. Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115–3119 (2013).

    CAS  Google Scholar 

  148. Sharon, D. et al. Lithium–oxygen electrochemistry in non-aqueous solutions. Isr. J. Chem. 55, 508–520 (2015).

    CAS  Google Scholar 

  149. Kwak, W.-J. et al. Understanding the behavior of Li–oxygen cells containing LiI. J. Mater. Chem. A 3, 8855–8864 (2015).

    CAS  Google Scholar 

  150. Ottakam Thotiyl, M. M. et al. A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 12, 1050–1056 (2013).

    CAS  Google Scholar 

  151. Kundu, D., Black, R., Berg, E. J. & Nazar, L. F. A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8, 1292–1298 (2015).

    CAS  Google Scholar 

  152. Su, D., Dou, S. & Wang, G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li–O2 batteries. Sci. Rep. 4, 5767 (2014).

    Google Scholar 

  153. Kwak, W.-J. et al. A Mo2C/carbon nanotube composite cathode for lithium–oxygen batteries with high energy efficiency and long cycle life. ACS Nano 9, 4129–4137 (2015).

    CAS  Google Scholar 

  154. Li, F. et al. Superior performance of a Li–O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode. Adv. Energy Mater. 5, 1500294 (2015).

    Google Scholar 

  155. Kim, B. G., Lee, J.-N., Lee, D. J., Park, J.-K. & Choi, J. W. Robust cycling of Li–O2 batteries through the synergistic effect of blended electrolytes. ChemSusChem 6, 443–448 (2013).

    CAS  Google Scholar 

  156. Linden, D. & Reddy, T. B. Handbook of Batteries (McGraw-Hill, 2001).

    Google Scholar 

  157. Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015).

    CAS  Google Scholar 

  158. Parker, J. F., Chervin, C. N., Nelson, E. S., Rolison, D. R. & Long, J. W. Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling. Energy Environ. Sci. 7, 1117–1124 (2014).

    CAS  Google Scholar 

  159. Müller, S., Haas, O., Schlatter, C. & Comninellis, C. Development of a 100 W rechargeable bipolar zinc/oxygen battery. J. Appl. Electrochem. 28, 305–310 (1998).

    Google Scholar 

  160. Vorkapic´, L. Ž., Dražic´, D. M. & Despic´, A. R. Corrosion of pure and amalgamated zinc in concentrated alkali hydroxide solutions. J. Electrochem. Soc. 121, 1385–1392 (1974).

    Google Scholar 

  161. Lee, C. W., Sathiyanarayanan, K., Eom, S. W. & Yun, M. S. Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery. J. Power Sources 160, 1436–1441 (2006).

    CAS  Google Scholar 

  162. Ein-Eli, Y., Auinat, M. & Starosvetsky, D. Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors. J. Power Sources 114, 330–337 (2003).

    CAS  Google Scholar 

  163. Cho, Y.-D. & Fey, G. T.-K. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution. J. Power Sources 184, 610–616 (2008).

    CAS  Google Scholar 

  164. Li, Y. et al. Advanced zinc–air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4, 1805 (2013).

    Google Scholar 

  165. Cheng, H.-H. & Tan, C.-S. Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. J. Power Sources 162, 1431–1436 (2006).

    CAS  Google Scholar 

  166. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). This article details the motivation behind Na-ion batteries and provides a summary of the broad range of their positive and negative electrodes.

    CAS  Google Scholar 

  167. Kim, Y., Ha, K. H., Oh, S. M. & Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 20, 11980–11992 (2014).

    CAS  Google Scholar 

  168. Delmas, C., Braconnier, J.-J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 34, 165–169 (1981).

    Google Scholar 

  169. Yabuuchi, N. et al. P2-type NaxFe1/2Mn1/2O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012).

    CAS  Google Scholar 

  170. Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011).

    CAS  Google Scholar 

  171. Yu, C. Y. et al. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8, 2019–2026 (2015).

    CAS  Google Scholar 

  172. de la Llave, E. et al. Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl. Mater. Interfaces 8, 1867–1875 (2015).

    Google Scholar 

  173. Delmas, C., Cherkaoui, F., Nadiri, A. & Hagenmuller, P. A. NASICON-type phase as intercalation electrode: NaTi2(PO4)3 . Mater. Res. Bull. 22, 631–639 (1987).

    CAS  Google Scholar 

  174. Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J.-M. & Rosa Palacin, M. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011).

    CAS  Google Scholar 

  175. Rudola, A., Saravanan, K., Devaraj, S., Gong, H. & Balaya, P. Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. Chem. Commun. 49, 7451–7453 (2013).

    CAS  Google Scholar 

  176. Wu, D. et al. NaTiO2: a layered anode material for sodium-ion batteries. Energy Environ. Sci. 8, 195–202 (2015).

    CAS  Google Scholar 

  177. Chevrier, V. L. & Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011).

    CAS  Google Scholar 

  178. Baggetto, L. et al. Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J. Power Sources 234, 48–59 (2013).

    CAS  Google Scholar 

  179. Ellis, L. D., Hatchard, T. D. & Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 159, A1801–A1805 (2012).

    CAS  Google Scholar 

  180. Kim, Y. et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 3045–3049 (2013).

    CAS  Google Scholar 

  181. Qian, J., Wu, X., Cao, Y., Ai, X. & Yang, H. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. Engl. 52, 4633–4636 (2013).

    CAS  Google Scholar 

  182. Li, W.-J., Chou, S.-L., Wang, J.-Z., Liu, H.-K. & Dou, S.-X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 13, 5480–5484 (2013).

    CAS  Google Scholar 

  183. Darwiche, A. et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 135, 10179–10179 (2013).

    CAS  Google Scholar 

  184. Baggetto, L. et al. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J. Mater. Chem. A 1, 7985–7994 (2013).

    CAS  Google Scholar 

  185. He, M., Kraychyk, K., Walter, M. & Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett. 14, 1255–1262 (2014).

    CAS  Google Scholar 

  186. Baggetto, L., Keum, J. K., Browning, J. F. & Veith, G. M. Germanium as negative electrode material for sodium-ion batteries. Electrochem. Commun. 34, 41–44 (2013).

    CAS  Google Scholar 

  187. Abel, P. R. et al. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 117, 18885–18890 (2013).

    CAS  Google Scholar 

  188. Webb, S. A., Baggetto, L., Bridges, C. A. & Veith, G. M. The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J. Power Sources 248, 1105–1117 (2014).

    CAS  Google Scholar 

  189. Baggetto, L., Marszewski, M., Gorka, J., Jaroniec, M. & Veith, G. M. AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J. Power Sources 243, 699–705 (2013).

    CAS  Google Scholar 

  190. Baggetto, L., Allcorn, E., Manthiram, A. & Veith, G. M. Cu2Sb thin films as anode for Na-ion batteries. Electrochem. Commun. 27, 168–171 (2013).

    CAS  Google Scholar 

  191. Baggetto, L., Allcorn, E., Unocic, R. R., Manthiram, A. & Veith, G. M. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 1, 11163–11169 (2013).

    CAS  Google Scholar 

  192. Koo, B. et al. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem. Mater. 25, 245–252 (2013).

    CAS  Google Scholar 

  193. Alcántara, R., Jaraba, M., Lavela, P. & Tirado, J. L. NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847–2848 (2002).

    Google Scholar 

  194. Su, D., Wang, C., Ahn, H. & Wang, G. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys. Chem. Chem. Phys. 15, 12543–12550 (2013).

    CAS  Google Scholar 

  195. Yu, D. Y. W. et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013).

    Google Scholar 

  196. Zhu, C., Mu, X., van Aken, P. A., Yu, Y. & Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. Engl. 53, 2152–2156 (2014).

    CAS  Google Scholar 

  197. Fullenwarth, J., Darwiche, A., Soares, A., Donnadieu, B. & Monconduit, L. NiP3: a promising negative electrode for Li- and Na-ion batteries. J. Mater. Chem. A 2, 2050–2059 (2014).

    CAS  Google Scholar 

  198. Kim, Y. et al. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26, 4139–4144 (2014).

    CAS  Google Scholar 

  199. Hong, S. Y. et al. Charge carriers in rechargeable batteries: Na ions versus Li ions. Energy Environ. Sci. 6, 2067–2081 (2013).

    CAS  Google Scholar 

  200. Deng, W. et al. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3, 2671 (2013).

    Google Scholar 

  201. Park, Y. et al. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 24, 3562–3567 (2012).

    CAS  Google Scholar 

  202. Hwang, J.-Y. et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 6865 (2015).

    CAS  Google Scholar 

  203. Aurbach, D. et al. Progress in rechargeable magnesium battery technology. Adv. Mater. 19, 4260–4267 (2007).

    CAS  Google Scholar 

  204. Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013). Progress in rechargeable Mg batteries since the original prototype work are reviewed in this article, which focuses on the development of electrolyte solutions and cathode materials.

    CAS  Google Scholar 

  205. Gregory, T. D., Hoffman, R. J. & Winterton, R. C. Nonaqueous electrochemistry of magnesium: applications to energy storage. J. Electrochem. Soc. 137, 775–780 (1990).

    CAS  Google Scholar 

  206. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    CAS  Google Scholar 

  207. Pour, N., Gofer, Y., Major, D. T. & Aurbach, D. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc. 133, 6270–6278 (2011).

    CAS  Google Scholar 

  208. Doe, R. E. et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014).

    CAS  Google Scholar 

  209. Lv, D. et al. A scientific study of current collectors for Mg batteries in Mg(AlCl2EtBu)2/THF electrolyte. J. Electrochem. Soc. 160, A351–A355 (2013).

    CAS  Google Scholar 

  210. Zhang, R. et al. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012).

    CAS  Google Scholar 

  211. Imamura, D., Miyayama, M., Hibino, M. & Kudo, T. Mg intercalation properties into V2O5 gel/carbon composites under high-rate condition. J. Electrochem. Soc. 150, A753–A758 (2003).

    CAS  Google Scholar 

  212. Nam, K. W. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15, 4071–4079 (2015).

    CAS  Google Scholar 

  213. Liang, Y. et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23, 640–643 (2011).

    CAS  Google Scholar 

  214. Liu, B. et al. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7, 8051–8058 (2013).

    CAS  Google Scholar 

  215. Orikasa, Y. et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014).

    CAS  Google Scholar 

  216. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    CAS  Google Scholar 

  217. Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015).

    Google Scholar 

  218. Wang, R. Y., Wessells, C. D., Huggins, R. A. & Cui, Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748–5752 (2013).

    CAS  Google Scholar 

  219. Mizuno, Y. et al. Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 1, 13055–13059 (2013).

    CAS  Google Scholar 

  220. Gaddum, L. W. & French, H. E. The electrolysis of Grignard solutions. J. Am. Chem. Soc. 49, 1295–1299 (1927).

    CAS  Google Scholar 

  221. Kim, H. S. et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).

    Google Scholar 

  222. Guo, Y.-s. et al. Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ. Sci. 5, 9100–9106 (2012).

    CAS  Google Scholar 

  223. Shterenberg, I. et al. Evaluation of (CF3SO2)2N (TFSI) based electrolyte solutions for Mg batteries. J. Electrochem. Soc. 162, A7118–A7128 (2015).

    CAS  Google Scholar 

  224. Mohtadi, R., Matsui, M., Arthur, T. S. & Hwang, S.-J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. Engl. 51, 9780–9783 (2012).

    CAS  Google Scholar 

  225. Carter, T. J. et al. Boron clusters as highly stable magnesium-battery electrolytes. Angew. Chem. Int. Ed. Engl. 53, 3173–3177 (2014).

    CAS  Google Scholar 

  226. Tutusaus, O. et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. Engl. 54, 7900–7904(2015).

    CAS  Google Scholar 

Download references

Acknowledgements

J.W.C. thanks J. Min for his help in the volumetric-energy-density evaluation. J.W.C. acknowledges the support of the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2012-R1A2A1A01011970 and NRF-2014R1A4A1003712). D.A. acknowledges help from the Israel Science Foundation, in the framework of the INREP project. This work was also made possible by NPRP grant #5-569-2–232 from the Qatar National Research Fund (a member of the Qatar Foundation).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jang Wook Choi or Doron Aurbach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing