Focus |

Bacterial growth

Bacterial growth is finely tuned to cellular state and environmental input. Growth not only determines the fate of a single cell, but also of the community, and both depends on and is regulated by other cells, including kin cells, other microorganisms and host cells. What governs bacterial growth is a classic question of microbiology with a rich history of research, and modern tools and approaches have invigorated the field. In this Focus issue, Nature Reviews Microbiology highlights some of the mechanisms that regulate bacterial population dynamics, and explores how growth depends on environmental conditions, for example in biofilms, the microbiota or states of low energy.


Numerous metabolic functions, social interactions and survival mechanisms are specific to, or more pronounced in, biofilms than in planktonic cells. In this Review, Flemming and colleagues highlight the central role of the self-produced matrix in establishing these 'emergent properties' of biofilms.

Review Article | | Nature Reviews Microbiology

Quorum sensing is used to control the behaviour of bacterial communities. In this Review, Papenfort and Bassler highlight recent discoveries about quorum sensing in Gram-negative bacteria, such as novel autoinducers and signalling networks that promote communication that ranges from intra-species to inter-kingdom.

Review Article | | Nature Reviews Microbiology

Microbial biofilms exhibit vast complexity in terms of both resident species composition and phenotypic diversity. Here, Foster and colleagues discuss theoretical and experimental work that reveals how the spatial arrangement of genotypes within microbial communities influences the cooperative and competitive cell–cell interactions that define biofilm form and function.

Review Article | | Nature Reviews Microbiology