Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The physiology of growth arrest: uniting molecular and environmental microbiology

Key Points

  • Most bacteria in the environment are not actively growing most of the time, but the molecular mechanisms that govern growth-arrested states are not well understood.

  • Growth arrest has been studied by depleting nutrients or oxygen, which leads to large changes in metabolism, nucleoid state and the regulation of gene expression compared with exponential growth. Metabolism shifts during growth arrest to the use of alternative sources of energy and biosynthetic precursors, including internal stores.

  • The regulation of gene expression in non-growing states seems to differ from regulation during the entry to stationary phase and prioritizes successful expression of maintenance and survival functions.

  • The nucleoid is highly condensed during growth arrest through the activities of nucleoid-associated proteins, which not only protect DNA but also modulate gene expression.

  • Progress in understanding the physiology of stasis requires work to identify the key environmental factors that constrain microbial growth in situ, and, informed by this knowledge, laboratory studies that use emerging tools to reveal the molecular mechanisms that sustain cells through periods of growth arrest.

Abstract

Most bacteria spend the majority of their time in prolonged states of very low metabolic activity and little or no growth, in which electron donors, electron acceptors and/or nutrients are limited, but cells are poised to undergo rapid division cycles when resources become available. These non-growing states are far less studied than other growth states, which leaves many questions regarding basic bacterial physiology unanswered. In this Review, we discuss findings from a small but diverse set of systems that have been used to investigate how growth-arrested bacteria adjust metabolism, regulate transcription and translation, and maintain their chromosomes. We highlight major questions that remain to be addressed, and suggest that progress in answering them will be aided by recent methodological advances and by dialectic between environmental and molecular microbiology perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic rewiring during growth arrest.
Figure 2: Transcription and translation during different growth phases.
Figure 3: Overview of cellular morphology with emphasis on nucleoid.

Similar content being viewed by others

References

  1. De Nobili, M., Contin, M., Mondini, C. & Brookes, P. C. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol. Biochem. 33, 1163–1170 (2001).

    CAS  Google Scholar 

  2. Amy, P. S. & Morita, R. Y. Starvation–survival patterns of sixteen freshly isolated open-ocean bacteria. Appl. Environ. Microbiol. 45, 1109–1115 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lever, M. A. et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol. Rev. 39, 688–728 (2015).

    CAS  PubMed  Google Scholar 

  5. Kolter, R. Growth in studying the cessation of growth. J. Bacteriol. 181, 697–699 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Finkel, S. E. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat. Rev. Microbiol. 4, 113–120 (2006).

    CAS  PubMed  Google Scholar 

  7. Notley-McRobb, L., King, T. & Ferenci, T. rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J. Bacteriol. 184, 806–811 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gefen, O., Fridman, O., Ronin, I. & Balaban, N. Q. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc. Natl Acad. Sci. USA 111, 556–561 (2014). This study is notable because it provides insight into behaviours at a single-cell level in a stationary phase-like non-growing condition, pointing the way forward for future research that takes into account the possibility for population heterogeneity.

    CAS  PubMed  Google Scholar 

  9. Battesti, A., Majdalani, N. & Gottesman, S. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65, 189–213 (2011).

    CAS  PubMed  Google Scholar 

  10. Nystrom, T. Stationary-phase physiology. Annu. Rev. Microbiol. 58, 161–181 (2004).

    PubMed  Google Scholar 

  11. Higgins, D. & Dworkin, J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36, 131–148 (2012).

    CAS  PubMed  Google Scholar 

  12. Nystrom, T. & Gustavsson, N. Maintenance energy requirement: what is required for stasis survival of Escherichia coli? Biochim. Biophys. Acta. 1365, 225–231 (1998).

    CAS  PubMed  Google Scholar 

  13. Koch, A. L. Microbial physiology and ecology of slow growth. Microbiol. Mol. Biol. Rev. 61, 305–318 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Harold, F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36, 172–230 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Farewell, A., Diez, A. A., DiRusso, C. D. & Nystrom, T. Role of the Escherichia coli FadR regulator in stasis survival and growth phase-dependent expression of the uspA. fad, and fab genes. J. Bacteriol. 178, 6443–6450 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hood, M. A., Guckert, J. B., White, D. C. & Deck, F. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52, 788–793 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaberdin, V. R. et al. Unveiling the metabolic pathways associated with the adaptive reduction of cell size during Vibrio harveyi persistence in seawater microcosms. Microb. Ecol. 70, 689–700 (2015).

    CAS  PubMed  Google Scholar 

  18. Geesey, G. G. & Morita, R. Y. Capture of arginine at low concentrations by a marine psychrophilic bacterium. Appl. Environ. Microbiol. 38, 1092–1097 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zimmer, D. P. et al. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc. Natl Acad. Sci. USA 97, 14674–14679 (2000).

    CAS  PubMed  Google Scholar 

  20. van der Ploeg, J., Eichhorn, E. & Leisinger, T. Sulfonate–sulfur metabolism and its regulation in Escherichia coli. Arch. Microbiol. 176, 1–8 (2001).

    CAS  PubMed  Google Scholar 

  21. Ishige, T., Krause, M., Bott, M., Wendisch, V. F. & Sahm, H. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J. Bacteriol. 185, 4519–4529 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zambrano, M. M., Siegele, D. A., Almirón, M., Tormo, A. & Kolter, R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259, 1757–1760 (1993).

    CAS  PubMed  Google Scholar 

  23. Zinser, E. R. & Kolter, R. Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J. Bacteriol. 181, 5800–5807 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zinser, E. R. & Kolter, R. Prolonged stationary-phase incubation selects for lrp mutations in Escherichia coli K-12. J. Bacteriol. 182, 4361–4365 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cowley, E. S., Kopf, S. H., LaRiviere, A., Ziebis, W. & Newman, D. K. Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio 6, e00767 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rao, S. P., Alonso, S., Rand, L., Dick, T. & Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 105, 11945–11950 (2008).

    CAS  PubMed  Google Scholar 

  27. Watanabe, S. et al. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 7, e1002287 (2011). This work comprehensively and quantitatively describes the metabolism of M. tuberculosis during hypoxia.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Eoh, H. & Rhee, K. Y. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 110, 6554–6559 (2013).

    CAS  PubMed  Google Scholar 

  29. Zimmermann, M. et al. Dynamic exometabolome analysis reveals active metabolic pathways in non-replicating mycobacteria. Environ. Microbiol. 17, 4802–4815 (2015).

    CAS  PubMed  Google Scholar 

  30. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    CAS  PubMed  Google Scholar 

  31. Leistikow, R. L. et al. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J. Bacteriol. 192, 1662–1670 (2010).

    CAS  PubMed  Google Scholar 

  32. Glasser, N. R., Kern, S. E. & Newman, D. K. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol. Microbiol. 92, 399–412 (2014). In this study, the authors analyse several metabolic strategies that are used by P. aeruginosa during anaerobic survival, which provides useful background information for understanding metabolic constraints in this state.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Eschbach, M. et al. Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J. Bacteriol. 186, 4596–4604 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vander Wauven, C., Pierard, A., Kley-Raymann, M. & Haas, D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J. Bacteriol. 160, 928–934 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M. & Sauer, U. Multidimensional optimality of microbial metabolism. Science 336, 601–604 (2012).

    CAS  PubMed  Google Scholar 

  36. Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    CAS  PubMed  Google Scholar 

  37. Bryant, M. P., Wolin, E. A., Wolin, M. J. & Wolfe, R. S. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59, 20–31 (1967).

    CAS  PubMed  Google Scholar 

  38. Venkataraman, A., Rosenbaum, M. A., Perkins, S. D., Werner, J. J. & Angenent, L. T. Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ. Sci. 4, 4550 (2011).

    CAS  Google Scholar 

  39. Dennis, P. P., Ehrenberg, M. & Bremer, H. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol. Mol. Biol. Rev. 68, 639–668 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Subramaniam, A. R., Zid, B. M. & O'Shea, E. K. An integrated approach reveals regulatory controls on bacterial translation elongation. Cell 159, 1200–1211 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Potrykus, K. & Cashel, M. (p)ppGpp: still magical? Annu. Rev. Microbiol. 62, 35–51 (2008).

    CAS  PubMed  Google Scholar 

  42. Typas, A., Becker, G. & Hengge, R. The molecular basis of selective promoter activation by the σS subunit of RNA polymerase. Mol. Microbiol. 63, 1296–1306 (2007).

    CAS  PubMed  Google Scholar 

  43. Perederina, A. et al. Regulation through the secondary channel — structural framework for ppGpp–DksA synergism during transcription. Cell 118, 297–309 (2004).

    CAS  PubMed  Google Scholar 

  44. Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–322 (2004).

    CAS  PubMed  Google Scholar 

  45. Perron, K., Comte, R. & van Delden, C. DksA represses ribosomal gene transcription in Pseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters. Mol. Microbiol. 56, 1087–1102 (2005).

    CAS  PubMed  Google Scholar 

  46. Murray, H. D., Schneider, D. A. & Gourse, R. L. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell 12, 125–134 (2003).

    CAS  PubMed  Google Scholar 

  47. Perez-Osorio, A. C., Williamson, K. S. & Franklin, M. J. Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J. Bacteriol. 192, 2991–3000 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Babin, B. M. et al. SutA is a bacterial transcription factor expressed during slow growth in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 113, E597–E605 (2016). This work takes advantage of time-specific proteome labelling to determine which proteins are preferentially expressed during anaerobic survival in P. aeruginosa. Such preferential expression helps to circumvent the problem of having low levels of new protein synthesis in this condition.

    CAS  PubMed  Google Scholar 

  49. Farrell, M. J. & Finkel, S. E. The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J. Bacteriol. 185, 7044–7052 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Peterson, C. N., Levchenko, I., Rabinowitz, J. D., Baker, T. A. & Silhavy, T. J. RpoS proteolysis is controlled directly by ATP levels in Escherichia coli. Genes Dev. 26, 548–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mika, F. & Hengge, R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of σS (RpoS) in E. coli. Genes Dev. 19, 2770–2781 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Battesti, A., Majdalani, N. & Gottesman, S. Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism. Proc. Natl Acad. Sci. USA 112, 5159–5164 (2015).

    CAS  PubMed  Google Scholar 

  53. Chapman, A. G., Fall, L. & Atkinson, D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J. Bacteriol. 108, 1072–1086 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. Mol. Cell 53, 766–778 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Belogurov, G. A. & Artsimovitch, I. Regulation of transcript elongation. Annu. Rev. Microbiol. 69, 49–69 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Starosta, A. L., Lassak, J., Jung, K. & Wilson, D. N. The bacterial translation stress response. FEMS Microbiol. Rev. 38, 1172–1201 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wassarman, K. M. & Saecker, R. M. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 314, 1601–1603 (2006).

    CAS  PubMed  Google Scholar 

  58. Kline, B. C., McKay, S. L., Tang, W. W. & Portnoy, D. A. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis. J. Bacteriol. 197, 581–591 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Deutscher, M. P. Degradation of stable RNA in bacteria. J. Biol. Chem. 278, 45041–45044 (2003).

    CAS  PubMed  Google Scholar 

  60. Zundel, M. A., Basturea, G. N. & Deutscher, M. P. Initiation of ribosome degradation during starvation in Escherichia coli. RNA 15, 977–983 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hauser, R. et al. RsfA (YbeB) proteins are conserved ribosomal silencing factors. PLoS Genet. 8, e1002815 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. Stallings, C. L. et al. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 138, 146–159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Srivastava, D. B. et al. Structure and function of CarD, an essential mycobacterial transcription factor. Proc. Natl Acad. Sci. USA 110, 12619–12624 (2013).

    CAS  PubMed  Google Scholar 

  64. Burmann, B. M. et al. A NusE–NusG complex links transcription and translation. Science 328, 501–504 (2010).

    CAS  PubMed  Google Scholar 

  65. Kusuya, Y., Kurokawa, K., Ishikawa, S., Ogasawara, N. & Oshima, T. Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells. J. Bacteriol. 193, 3090–3099 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hersch, S. J. et al. Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. mBio 4, e00180-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Wolf, S. G. et al. DNA protection by stress-induced biocrystallization. Nature 400, 83–85 (1999).

    CAS  PubMed  Google Scholar 

  68. Wang, J. D. & Levin, P. A. Metabolism, cell growth and the bacterial cell cycle. Nat. Rev. Microbiol. 7, 822–827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Skarstad, K. & Katayama, T. Regulating DNA replication in bacteria. Cold Spring Harb. Perspect. Biol. 5, a012922 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Hill, N. S., Buske, P. J., Shi, Y. & Levin, P. A. A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet. 9, e1003663 (2013). This work provides mechanistic insight into how the regulation of metabolism and cell division can be coordinated.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chai, Q. et al. Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. J. Biol. Chem. 289, 11342–11352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Stracy, M. et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl Acad. Sci. USA 112, E4390–E4399 (2015).

    CAS  PubMed  Google Scholar 

  73. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8, 185–195 (2010).

    CAS  PubMed  Google Scholar 

  74. Koch, C. & Kahmann, R. Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. J. Biol. Chem. 261, 15673–15678 (1986).

    CAS  PubMed  Google Scholar 

  75. Mallik, P. et al. Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fis P) in Escherichia coli. J. Bacteriol. 186, 122–135 (2003).

    Google Scholar 

  76. Nair, S. & Finkel, S. E. Dps protects cells against multiple stresses during stationary phase. J. Bacteriol. 186, 4192–4198 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Grainger, D. C., Goldberg, M. D., Lee, D. J. & Busby, S. J. Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Mol. Microbiol. 68, 1366–1377 (2008).

    CAS  PubMed  Google Scholar 

  78. Ceci, P. et al. DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res. 32, 5935–5944 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Frenkiel-Krispin, D. et al. Nucleoid restructuring in stationary-state bacteria. Mol. Microbiol. 51, 395–405 (2004).

    CAS  PubMed  Google Scholar 

  80. Kim, J. et al. Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. Nucleic Acids Res. 32, 1982–1992 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Karas, V. O., Westerlaken, I. & Meyer, A. S. The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses. J. Bacteriol. 197, 3206–3215 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Grant, R. A., Filman, D. J., Finkel, S. E., Kolter, R. & Hogle, J. M. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat. Struct. Biol. 5, 294–303 (1998).

    CAS  PubMed  Google Scholar 

  83. Corzett, C. H., Goodman, M. F. & Finkel, S. E. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Genetics 194, 409–420 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Asakura, H. et al. Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ. Microbiol. 9, 869–879 (2007).

    CAS  PubMed  Google Scholar 

  85. Lee, S. Y., Lim, C. J., Droge, P. & Yan, J. Regulation of bacterial DNA packaging in early stationary phase by competitive DNA binding of Dps and IHF. Sci. Rep. 5, 18146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Landgraf, J. R., Wu, J. & Calvo, J. M. Effects of nutrition and growth rate on Lrp levels in Escherichia coli. J. Bacteriol. 178, 6930–6936 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Moore, J. M. et al. Roles of nucleoid-associated proteins in stress-induced mutagenic break repair in starving Escherichia coli. Genetics 201, 1349–1362 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Morikawa, K. et al. Bacterial nucleoid dynamics: oxidative stress response in Staphylococcus aureus. Genes Cells 11, 409–423 (2006).

    CAS  PubMed  Google Scholar 

  89. Finkel, S. E. & Kolter, R. Evolution of microbial diversity during prolonged starvation. Proc. Natl Acad. Sci. USA 96, 4023–4027 (1999). This work describes long-term stationary-phase incubations and the surprising finding that beneficial mutations can sweep populations even when population numbers are not increasing over time, giving rise to considerable additional study of the GASP phenotype.

    CAS  PubMed  Google Scholar 

  90. Kondorosi, E., Mergaert, P. & Kereszt, A. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu. Rev. Microbiol. 67, 611–628 (2013).

    CAS  PubMed  Google Scholar 

  91. Lyons, N. A. & Kolter, R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24, 21–28 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, H. S. et al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8, 313–323 (1982).

    CAS  PubMed  Google Scholar 

  93. Ayrapetyan, M., Williams, T. C. & Oliver, J. D. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol. 23, 7–13 (2015).

    CAS  PubMed  Google Scholar 

  94. Ramamurthy, T., Ghosh, A., Pazhani, G. P. & Shinoda, S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front. Public Health 2, 103 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Epstein, S. S. The phenomenon of microbial uncultivability. Curr. Opin. Microbiol. 16, 636–642 (2013).

    CAS  PubMed  Google Scholar 

  96. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004). This work shows that non-growing states can be observed in growing populations, and that bacteria can enter and leave these states reversibly.

    CAS  PubMed  Google Scholar 

  97. Kaspy, I. et al. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat. Commun. 4, 3001 (2013).

    PubMed  Google Scholar 

  98. Cohen, N. R., Lobritz, M. A. & Collins, J. J. Microbial persistence and the road to drug resistance. Cell Host Microbe 13, 632–642 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rotem, E. et al. Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc. Natl Acad. Sci. USA 107, 12541–12546 (2010).

    CAS  PubMed  Google Scholar 

  100. Williamson, K. S. et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J. Bacteriol. 194, 2062–2073 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, J. et al. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523, 550–554 (2015). This work suggests that transient non-growing states might contribute importantly to the function and fitness of biofilms, which, in our view, is a motivator for future study into how growth arrest might be regulated over relatively small spatial and temporal scales in natural microbial communities.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lin, B., Westerhoff, H. V. & Roling, W. F. How Geobacteraceae may dominate subsurface biodegradation: physiology of Geobacter metallireducens in slow-growth habitat-simulating retentostats. Environ. Microbiol. 11, 2425–2433 (2009).

    CAS  PubMed  Google Scholar 

  103. Landgraf, P., Antileo, E. R., Schuman, E. M. & Dieterich, D. C. BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol. Biol. 1266, 199–215 (2015).

    CAS  PubMed  Google Scholar 

  104. Jorth, P. et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 18, 307–319 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. van Opijnen, T. & Camilli, A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat. Rev. Microbiol. 11, 435–442 (2013).

    CAS  PubMed  Google Scholar 

  106. Croucher, N. J. & Thomson, N. R. Studying bacterial transcriptomes using RNA-seq. Curr. Opin. Microbiol. 13, 619–624 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Myers, K. S., Park, D. M., Beauchene, N. A. & Kiley, P. J. Defining bacterial regulons using ChIP-seq. Methods 86, 80–88 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ingolia, N. T. Genome-wide translational profiling by ribosome footprinting. Methods Enzymol. 470, 119–142 (2010).

    CAS  PubMed  Google Scholar 

  109. Larson, M. H. et al. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344, 1042–1047 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Singh, G., Ricci, E. P. & Moore, M. J. RIPiT-Seq: a high-throughput approach for footprinting RNA:protein complexes. Methods 65, 320–332 (2014).

    CAS  PubMed  Google Scholar 

  111. Kopf, S. H. et al. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc. Natl Acad. Sci. USA 113, E110–E116 (2016). In this study, the authors apply sophisticated isotope labelling techniques borrowed from geochemistry to gain insight into very slow growth rates occurring in situ in a human infection context.

    CAS  PubMed  Google Scholar 

  112. Radajewski, S., McDonald, I. R. & Murrell, J. C. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 14, 296–302 (2003).

    CAS  PubMed  Google Scholar 

  113. Jiang, C. Y. et al. High throughput single-cell cultivation on microfluidic streak plates. Appl. Environ. Microbiol. 82, 2210–2218 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cannon, M. B. & Remington, S. J. Redox-sensitive green fluorescent protein: probes for dynamic intracellular redox responses. A review. Methods Mol. Biol. 476, 51–65 (2008).

    CAS  PubMed  Google Scholar 

  115. Berg, J., Hung, Y. P. & Yellen, G. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat. Methods 6, 161–166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wagner, M., Nielsen, P. H., Loy, A., Nielsen, J. L. & Daims, H. Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr. Opin. Biotechnol. 17, 83–91 (2006).

    CAS  PubMed  Google Scholar 

  117. Huang, W. E. et al. Raman–FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this review to R. Kolter, on the occasion of his upcoming retirement. Whether in his pursuit of meaningful bacterial or human lifestyles, he has been ahead of the curve his entire career. The authors thank him for inspiration, and thank members in the laboratory of D.K.N, S. Finkel and P. Esra for helpful feedback on this manuscript. D.K.N. is an Investigator of the Howard Hughes Medical Institute (HHMI). The authors thank the HHMI and the US National Institutes of Health (NIH; grant 5R01HL117328-03) for supporting their studies of non-growing states.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianne K. Newman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Exponential phase

Microbial population growth that can fit to the exponential equation N(t)=N0 ekt, where N(t) is the population size at time t, N0 is the starting population size, e is the base of the natural logarithm, and k is a constant. Exponential growth is generally assumed to occur when no resource is limiting, to be balanced and at steady state.

Stationary phase

A growth phase of microbial populations that occurs after at least one resource becomes limiting for growth. At the transition to stationary phase, the population continues to increase in size, but the rate of increase decreases; in stationary phase, the population size stops increasing.

Adenylate energy charge

(AEC). A value based on the ratio of high energy phosphate bonds in ATP and ADP molecules to the total amount of adenylate in the cell.

Antibiotic tolerance

The survival of cells that are exposed to high doses of antibiotics for periods of time that would usually be lethal. Antibiotic tolerance extends the length of time that a cell survives exposure to the drug, whereas resistance enables a cell to survive an increased concentration of the drug.

Persisters

A subpopulation of cells that exhibits antibiotic tolerance in a population in which other cells are killed by the same dose and length of exposure to a drug. Persisters were first noted in an exponential-phase culture that was treated with high doses of antibiotics for extended periods of time.

Anabolic

Metabolic reactions that construct larger macromolecules from smaller substrates.

Catabolic

Metabolic reactions that break down macromolecules into smaller components for the generation of energy or for recycling.

Reductive divisions

Cell divisions that are uncoupled from biosynthesis and growth, leading to progeny that are smaller in size. These contribute to the decrease in cell size that is observed during stationary phase.

Glyoxylate shunt

An alternative to the standard tricarboxylic acid (TCA) cycle in which steps that generate reduced NAD(P)H are bypassed to enable succinate, fumarate, malate and oxaloacetate to be produced for biosynthetic reactions without generating reducing equivalents. The glyoxylate shunt is useful in the context of limitation for terminal electron acceptors or the catabolism of lipids.

Anaplerotic

Reactions that replenish key intermediates of central metabolic cycles to compensate for their use by other biosynthetic pathways.

Nucleoid

The chromosome and associated proteins.

Sigma factor

A protein that recruits RNA polymerase to a specific set of promoters on DNA. Some sigma factors have large regulons, whereas others drive expression from only a few loci.

Electrogenic secretion

Symport of a substrate (with its chemical gradient) and a proton (against its chemical gradient) that results in a net increase in the proton motive force across a membrane.

Syntrophy

A mutually beneficial metabolic interaction between two (or more) species of microorganism.

Stringent response

A conserved regulatory mechanism that coordinates the responses of bacteria to nutrient downshift. The response is mediated by the small-molecule alarmone (p)ppGpp, the synthesis of which from ATP and GDP or GTP is stimulated by uncharged tRNAs or disrupted lipid biosynthesis.

Regulon

The group of genes that is regulated by a specific regulatory factor.

Open promoter complexes

The intermediate in transcription initiation in which RNA polymerase has bound to a promoter and unwound the double-stranded DNA, which allows the template strand of the DNA to pass through the active site of the polymerase.

Backtracked RNA polymerases

Transcribing RNA polymerases that slip backwards along a template after pausing, which causes the RNA–DNA hybrid at the 3′ end of the nascent transcript to unwind.

Origin of replication

The site on the bacterial chromosome, determined by its sequence, where the two strands of DNA are unwound to enable replication of the chromosome to begin.

Fenton reaction

A metal-catalysed free radical chain reaction in which Fe2+ is oxidized by H2O2 to produce OH and OH, which is a highly reactive radical species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergkessel, M., Basta, D. & Newman, D. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 14, 549–562 (2016). https://doi.org/10.1038/nrmicro.2016.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.107

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology