Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Thiopurine S-methyltransferase testing for averting drug toxicity: a meta-analysis of diagnostic test accuracy

Abstract

Thiopurine S-methyltransferase (TPMT) deficiency increases the risk of serious adverse events in persons receiving thiopurines. The objective was to synthesize reported sensitivity and specificity of TPMT phenotyping and genotyping using a latent class hierarchical summary receiver operating characteristic meta-analysis. In 27 studies, pooled sensitivity and specificity of phenotyping for deficient individuals was 75.9% (95% credible interval (CrI), 58.3–87.0%) and 98.9% (96.3–100%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 90.4% (79.1–99.4%) and 100.0% (99.9–100%), respectively. For individuals with deficient or intermediate activity, phenotype sensitivity and specificity was 91.3% (86.4–95.5%) and 92.6% (86.5–96.6%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 88.9% (81.6–97.5%) and 99.2% (98.4–99.9%), respectively. Genotyping has higher sensitivity as long as TPMT*2 and TPMT*3 are tested. Both approaches display high specificity. Latent class meta-analysis is a useful method for synthesizing diagnostic test performance data for clinical practice guidelines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Baker GR, Norton PG, Flintoft V, Blais R, Brown A, Cox J et al. The Canadian Adverse Events Study: the incidence of adverse events among hospital patients in Canada. CMAJ 2004; 170: 1678–1686.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alves S, Amorim A, Ferreira F, Prata MJ . Influence of the variable number of tandem repeats located in the promoter region of the thiopurine methyltransferase gene on enzymatic activity. Clin Pharmacol Ther 2001; 70: 165–174.

    Article  CAS  PubMed  Google Scholar 

  3. Anglicheau D, Sanquer S, Loriot MA, Beaune P, Thervet E . Thiopurine methyltransferase activity: new conditions for reversed-phase high-performance liquid chromatographic assay without extraction and genotypic-phenotypic correlation. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 773: 119–127.

    Article  CAS  PubMed  Google Scholar 

  4. Indjova D, Shipkova M, Atanasova S, Niedmann PD, Armstrong VW, Svinarov D et al. Determination of thiopurine methyltransferase phenotype in isolated human erythrocytes using a new simple nonradioactive HPLC method. Ther Drug Monit 2003; 25: 637–644.

    Article  CAS  PubMed  Google Scholar 

  5. Kham SKY, Soh CK, Liu TC, Chan YH, Ariffin H, Tan PL et al. Thiopurine S-methyltransferase activity in three major Asian populations: a population-based study in Singapore. Eur J Clin Pharmacol 2008; 64: 373–379.

    Article  CAS  PubMed  Google Scholar 

  6. Winter JW, Gaffney D, Shapiro D, Spooner RJ, Marinaki AM, Sanderson JD et al. Assessment of thiopurine methyltransferase enzyme activity is superior to genotype in predicting myelosuppression following azathioprine therapy in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2007; 25: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  7. Stanulla M, Schaeffeler E, Flohr T, Cario G, Schrauder A, Zimmermann M et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 2005; 293: 1485–1489.

    Article  CAS  PubMed  Google Scholar 

  8. Larovere LE, De Kremer RD, Lambooy LHJ, De Abreu RA . Genetic polymorphism of thiopurine S-methyltransferase in Argentina. Ann Clin Biochem 2003; 40: 388–393.

    Article  CAS  PubMed  Google Scholar 

  9. Wusk B, Kullak-Ublick GA, Rammert C, von Eckardstein A, Fried M, Rentsch KM . Thiopurine S-methyltransferase polymorphisms: efficient screening method for patients considering taking thiopurine drugs. Eur J Clin Pharmacol 2004; 60: 5–10.

    Article  CAS  PubMed  Google Scholar 

  10. Heckmann JM, Lambson EMT, Little F, Owen EP . Thiopurine methyltransferase (TPMT) heterozygosity and enzyme activity as predictive tests for the development of azathioprine-related adverse events. J Neurol Sci 2005; 231: 71–80.

    Article  CAS  PubMed  Google Scholar 

  11. Ujiie S, Sasaki T, Mizugaki M, Ishikawa M, Hiratsuka M . Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2 - *24). Pharmacogenet Genomics 2008; 18: 887–893.

    Article  CAS  PubMed  Google Scholar 

  12. Jones CD, Smart C, Titus A, Blyden G, Dorvil M, Nwadike N . Thiopurine methyltransferase activity in a sample population of black subjects in Florida. Clin Pharmacol Ther 1993; 53: 348–353.

    Article  CAS  PubMed  Google Scholar 

  13. Lee EJ, Kalow W . Thiopurine S-methyltransferase activity in a Chinese population. Clin Pharmacol Ther 1993; 54: 28–33.

    Article  CAS  PubMed  Google Scholar 

  14. Park-Hah JO, Klemetsdal B, Lysaa R, Choi KH, Aarbakke J . Thiopurine methyltransferase activity in a Korean population sample of children. Clin Pharmacol Ther 1996; 60: 68–74.

    Article  CAS  PubMed  Google Scholar 

  15. Centre for Reviews and Dissemination. Systematic reviews of clinical tests. In: York Uo (ed). Systematic Reviews: CRD's guidance for undertaking reviews in health care. York Publishing Services: York, 2009.

  16. Deeks JJ . Using evaluations of diagnostic tests: understanding their limitations and making the most of available evidence. Ann Oncol 1999; 10: 761–768.

    Article  CAS  PubMed  Google Scholar 

  17. Hurley J . Meta-analysis of clinical studies of diagnostic tests: developments in how the receiver operating characteristic "works". Arch Pathol Lab Med 2011; 135: 1585–1590.

    Article  PubMed  Google Scholar 

  18. Group DTAW (2013). Handbook for DTA Reviews. The Cochrane Collaboration. Available at http://srdta.cochrane.org/handbook-dta-reviews (accessed on 25 March 2013).

  19. Dukic V, Gatsonis C . Meta-analysis of diagnostic test accuracy assessment studies with varying number of thresholds. Biometrics 2003; 59: 936–946.

    Article  CAS  PubMed  Google Scholar 

  20. Gatsonis C, Paliwal P . Meta-analysis of diagnostic and screening test accuracy evaluations: methodologic primer. AJR Am J Roentgenol 2006; 187: 271–281.

    Article  PubMed  Google Scholar 

  21. Rutter CM, Gatsonis CA . A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 2001; 20: 2865–2884.

    Article  CAS  PubMed  Google Scholar 

  22. Dendukuri N, Joseph L . Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics 2001; 57: 158–167.

    Article  CAS  PubMed  Google Scholar 

  23. Albert PS . Estimating diagnostic accuracy of multiple binary tests with an imperfect reference standard. Stat Med 2009; 28: 780–797.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dendukuri N, Schiller I, Joseph L, Pai M . Bayesian meta-analysis of the accuracy of a test for tuberculous pleuritis in the absence of a gold standard reference. Biometrics 2012; 68: 1285–1293.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rutjes AW, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PM . Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol Assess 2007; 11: iii, ix–51.

    Article  Google Scholar 

  26. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH . Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005; 58: 982–990.

    Article  PubMed  Google Scholar 

  27. Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH, Hunink MG, Stijnen T . Bivariate random effects meta-analysis of ROC curves. Med Decis Making 2008; 28: 621–638.

    Article  CAS  PubMed  Google Scholar 

  28. Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JA . A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007; 8: 239–251.

    Article  PubMed  Google Scholar 

  29. Roy LM, Ungar WJ, Zur RM Thiopurine S-methyltransferase testing for averting drug toxicity in patients receiving thiopurines: a systematic review and quality appraisal. The Hospital for Sick Children: Toronto, 29 July 2015. Report no. 2015-02; Available at http://www.sickkids.ca/Research/TASK/Reports/index.html (accessed on 16 may 2016).

  30. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J . The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003; 3: 25.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dendukuri N, Hadgu A, Wang L . Modeling conditional dependence between diagnostic tests: a multiple latent variable model. Stat Med 2009; 28: 441–461.

    Article  PubMed  Google Scholar 

  32. Sinclair A, Xie X, Teltscher M, Dendukuri N . Systematic review and meta-analysis of a urine-based pneumococcal antigen test for diagnosis of community-acquired pneumonia caused by Streptococcus pneumoniae. J Clin Microbiol 2013; 51: 2303–2310.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ben Salah L, Belkhiria el Haj Amor M, Chbili C, Khlifi S, Fathallah N, Bougmiza I et al. Analysis of thiopurine S-methyltransferase phenotype-genotype in a Tunisian population with Crohn's disease. Eur J Drug Metab Pharmacokinet 2013; 38: 241–244.

    Article  CAS  PubMed  Google Scholar 

  34. Fakhoury M, Andreu-Gallien J, Mahr A, Medard Y, Azougagh S, Vilmer E et al. Should TPMT genotype and activity be used to monitor 6-mercaptopurine treatment in children with acute lymphoblastic leukaemia? J Clin Pharm Ther 2007; 32: 633–639.

    Article  CAS  PubMed  Google Scholar 

  35. Ford L, Graham V, Berg J . Whole-blood thiopurine S-methyltransferase activity with genotype concordance: a new, simplified phenotyping assay. Ann Clin Biochem 2006; 43: 354–360.

    Article  CAS  PubMed  Google Scholar 

  36. Ganiere-Monteil C, Medard Y, Lejus C, Bruneau B, Pineau A, Fenneteau O et al. Phenotype and genotype for thiopurine methyltransferase activity in the French Caucasian population: impact of age. Eur J Clin Pharmacol 2004; 60: 89–96.

    Article  CAS  PubMed  Google Scholar 

  37. Gazouli M, Pachoula I, Panayotou I, Chouliaras G, Anagnou NP, Chroussos G et al. Thiopurine methyltransferase genotype and thiopurine S-methyltransferase activity in Greek children with inflammatory bowel disease. Ann Gastroenterol 2012; 25: 249–253.

    PubMed  Google Scholar 

  38. Larussa T, Suraci E, Lentini M, Nazionale I, Gallo L, Abenavoli L et al. High prevalence of polymorphism and low activity of thiopurine methyltransferase in patients with inflammatory bowel disease. Eur J Intern Med 2012; 23: 273–277.

    Article  CAS  PubMed  Google Scholar 

  39. Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 2004; 14: 407–417.

    Article  CAS  PubMed  Google Scholar 

  40. Schwab M, Schaffeler E, Marx C, Fischer C, Lang T, Behrens C et al. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics 2002; 12: 429–436.

    Article  CAS  PubMed  Google Scholar 

  41. Serpe L, Calvo PL, Muntoni E, D'Antico S, Giaccone M, Avagnina A et al. Thiopurine S-methyltransferase pharmacogenetics in a large-scale healthy Italian-Caucasian population: differences in enzyme activity. Pharmacogenomics 2009; 10: 1753–1765.

    Article  CAS  PubMed  Google Scholar 

  42. Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, Pui CH et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997; 126: 608–614.

    Article  CAS  PubMed  Google Scholar 

  43. Hindorf U, Appell ML . Genotyping should be considered the primary choice for pre-treatment evaluation of thiopurine methyltransferase function. J Crohns Colitis 2012; 6: 655–659.

    Article  PubMed  Google Scholar 

  44. Spire-Vayron de la Moureyre C, Debuysere H, Mastain B, Vinner E, Marez D, Lo Guidice JM et al. Genotypic and phenotypic analysis of the polymorphic thiopurine S-methyltransferase gene (TPMT) in a European population. Br J Pharmacol 1998; 125: 879–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spire-Vayron de la Moureyre C, Debuysere H, Sabbagh N, Marez D, Vinner E, Chevalier ED et al. Detection of known and new mutations in the thiopurine S-methyltransferase gene by single-strand conformation polymorphism analysis. Hum Mutat 1998; 12: 177–185.

    Article  CAS  PubMed  Google Scholar 

  46. Langley PG, Underhill J, Tredger JM, Norris S, McFarlane IG . Thiopurine methyltransferase phenotype and genotype in relation to azathioprine therapy in autoimmune hepatitis. J Hepatol 2002; 37: 441–447.

    Article  CAS  PubMed  Google Scholar 

  47. Lennard L, Cartwright CS, Wade R, Richards SM, Vora A . Thiopurine methyltransferase genotype-phenotype discordance and thiopurine active metabolite formation in childhood acute lymphoblastic leukaemia. Br J Clin Pharmacol 2013; 76: 125–136.

    Article  CAS  PubMed  Google Scholar 

  48. Fangbin Z, Xiang G, Minhu C, Liang D, Feng X, Min H et al. Should thiopurine methyltransferase genotypes and phenotypes be measured before thiopurine therapy in patients with inflammatory bowel disease? Ther Drug Monit 2012; 34: 695–701.

    Article  CAS  PubMed  Google Scholar 

  49. Liang JJ, Geske JR, Boilson BA, Frantz RP, Edwards BS, Kushwaha SS et al. TPMT genetic variants are associated with increased rejection with azathioprine use in heart transplantation. Pharmacogenet Genomics 2013; 23: 658–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma XL, Wu MY, Hu YM, Zu P, Li ZG . Relationships between thiopurine methyltransferase gene polymorphisms and its enzymatic activity. [Chinese]. Zhonghua zhong liu za zhi 2006; 28: 456–459.

    CAS  PubMed  Google Scholar 

  51. Marinaki AM, Arenas M, Khan ZH, Lewis CM, Shobowale-Bakre E-M, Escuredo E et al. Genetic determinants of the thiopurine methyltransferase intermediate activity phenotype in British Asians and Caucasians. Pharmacogenetics 2003; 13: 97–105.

    Article  CAS  PubMed  Google Scholar 

  52. Milek M, Murn J, Jaksic Z, Lukac Bajalo J, Jazbec J, Mlinaric Rascan I . Thiopurine S-methyltransferase pharmacogenetics: genotype to phenotype correlation in the Slovenian population. Pharmacology 2006; 77: 105–114.

    Article  CAS  PubMed  Google Scholar 

  53. von Ahsen N, Armstrong VW, Behrens C, von Tirpitz C, Stallmach A, Herfarth H et al. Association of inosine triphosphatase 94C>A and thiopurine S-methyltransferase deficiency with adverse events and study drop-outs under azathioprine therapy in a prospective Crohn disease study. Clin Chem 2006; 52: 1628.

    Article  CAS  Google Scholar 

  54. Wennerstrand P, Martensson LG, Soderhall S, Zimdahl A, Appell ML . Methotrexate binds to recombinant thiopurine S-methyltransferase and inhibits enzyme activity after high-dose infusions in childhood leukaemia. Eur J Clin Pharmacol 2013; 69: 1641–1649.

    Article  CAS  PubMed  Google Scholar 

  55. Xin H-W, Xiong H, Wu X-C, Li Q, Xiong L, Yu A-R . Relationships between thiopurine S-methyltransferase polymorphism and azathioprine-related adverse drug reactions in Chinese renal transplant recipients. Eur J Clin Pharmacol 2009; 65: 249–255.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang L-R, Song D-K, Zhang W, Zhao J, Jia L-J, Xing D-L . Efficient screening method of the thiopurine methyltransferase polymorphisms for patients considering taking thiopurine drugs in a Chinese Han population in Henan Province (central China). Clinica Chimica Acta 2007; 376: 45–51.

    Article  CAS  Google Scholar 

  57. Jorquera A, Solari S, Vollrath V, Guerra I, Chianale J, Cofre C et al. [Phenotype and genotype of thiopurine methyltransferase in Chilean individuals]. Rev Med Chil 2012; 140: 889–895.

    Article  CAS  PubMed  Google Scholar 

  58. Loennechen T, Yates CR, Fessing MY, Relling MV, Krynetski EY, Evans WE . Isolation of a human thiopurine S-methyltransferase (TPMT) complementary DNA with a single nucleotide transition A719G (TPMT*3C) and its association with loss of TPMT protein and catalytic activity in humans. Clin Pharmacol Ther 1998; 64: 46–51.

    Article  CAS  PubMed  Google Scholar 

  59. Lunn DJ, Thomas A, Best N, Spiegelhalter D . WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility. Stat Comput 2000; 10: 325–337.

    Article  Google Scholar 

  60. Donnan JR, Ungar WJ, Mathews M, Rahman P . Systematic review of thiopurine methyltransferase genotype and enzymatic testing strategies. Ther Drug Monit 2011; 33: 192–199.

    CAS  PubMed  Google Scholar 

  61. Booth RA, Ansari MT, Loit E, Tricco AC, Weeks L, Doucette S et al. Assessment of thiopurine S-methyltransferase activity in patients prescribed thiopurines: a systematic review. Ann Intern Med 2011; 154: 814–823.

    Article  PubMed  Google Scholar 

  62. Dendukuri N. Software 2015. Available at http://www.nandinidendukuri.com/index.php?option=com_content&view=category&id=41&Itemid=60 (accessed on 23 June 2015).

  63. Reitsma J, Rutjes AWS, Whiting P, Vlassov VV, Leeflang MMG, Deeks JJ. Assessing methodological quality. In: Deeks JJ, Bossuyt PM, Gatsonis C (eds). Cochrane Handbook for Systematic Reviews of Diagnostic Accuracy Version 1.0.0. The Cochrane Collaboration. Chapter 9, 2009.

  64. Briggs AH, Claxton K, Sculpher MJ . Decision Modelling for Health Economic Evaluation. Oxford University Press: Oxford, 2006.

    Google Scholar 

  65. Wright C, Burton H, Hall A, Moorthie S, Pokorska-Bocci A, Sagoo G et al. Next steps in the sequence. The implications of whole genome sequencing for health in the UK. PHG Foundation: Cambridge, 2011.

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Canadian Institutes of Health Research Knowledge Synthesis Grant, grant #305352. We thank Mr Ian Schiller, MSc, Division of Clinical Epidemiology, McGill University Health Centre and Dr. Nandini Dendekuri, PhD, Director, Technology Assessment Unit of the McGill University Health Centre for technical assistance. We thank Ms Christine Millan for administrative assistance. The funding agency did not have a role in the design, conduct and analysis of the study or the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W J Ungar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zur, R., Roy, L., Ito, S. et al. Thiopurine S-methyltransferase testing for averting drug toxicity: a meta-analysis of diagnostic test accuracy. Pharmacogenomics J 16, 305–311 (2016). https://doi.org/10.1038/tpj.2016.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.37

This article is cited by

Search

Quick links