Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Power electronics in wind generation systems

Abstract

The integration of wind power into the power system has been driven by the development of power electronics technology. Unlike conventional rotating synchronous generators, wind power is interfaced with static power converters. Expanding the role of converter-interfaced wind power generators in future power systems from passively following the power system to actively participating in its regulation offers frequency support functionality, which is beneficial for enhancing the frequency stability of power systems with high penetration of wind and low inertia. In this Review, we first present the achievements of wind energy development over the past three decades. We then highlight the role of power electronics for wind power systems, including their advanced control, and discuss issues from the power system-level perspective that relate to the emerging requirements of supporting future sustainable power systems. We present ongoing research and pilot projects in Europe that demonstrate the current research focus of wind power systems and, finally, discuss future areas of research required to enable improved integration of wind energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of wind generation systems.
Fig. 2: Configurations of converter-based wind generation systems.
Fig. 3: Topologies of grid-interfaced converters in wind power applications.
Fig. 4: Summary of control strategies for wind generation systems.
Fig. 5: Issues when wind generation systems are integrated into power systems.
Fig. 6: Bornholm Energy Island175.
Fig. 7: Future trends in wind power generation systems.

Similar content being viewed by others

References

  1. Shafiee, S. & Topal, E. When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009).

    Article  Google Scholar 

  2. Bose, B. K. Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Ind. Electron. Mag. 4, 6–17 (2010).

    Article  Google Scholar 

  3. Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094 (2020).

    Article  Google Scholar 

  4. Mohandes, B., Moursi, M. S. E., Hatziargyriou, N. & Khatib, S. E. A review of power system flexibility with high penetration of renewables. IEEE Trans. Power Syst. 34, 3140–3155 (2019).

    Article  Google Scholar 

  5. Østergaard, P. A., Duic, N., Noorollahi, Y., Mikulcic, H. & Kalogirou, S. Sustainable development using renewable energy technology. Renew. Energy 146, 2430–2437 (2020).

    Article  Google Scholar 

  6. Sadorsky, P. Wind energy for sustainable development: driving factors and future outlook. J. Clean. Prod. 289, 125779 (2021).

    Article  Google Scholar 

  7. Ahmed, S. D., Al-Ismail, F. S. M., Shafiullah, M., Al-Sulaiman, F. A. & El-Amin, I. M. Grid integration challenges of wind energy: a review. IEEE Access 8, 10857–10878 (2020).

    Article  Google Scholar 

  8. Dupré, A. et al. Sub-hourly forecasting of wind speed and wind energy. Renew. Energy 145, 2373–2379 (2020).

    Article  Google Scholar 

  9. Wang, Y., Zou, R., Liu, F., Zhang, L. & Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. Appl. Energy 304, 117766 (2021).

    Article  Google Scholar 

  10. Tawn, R. & Browell, J. A review of very short-term wind and solar power forecasting. Renew. Sustain. Energy Rev. 153, 111758 (2022).

    Article  Google Scholar 

  11. Hannan, M. et al. Power electronics contribution to renewable energy conversion addressing emission reduction: applications, issues, and recommendations. Appl. Energy 251, 113404 (2019).

    Article  Google Scholar 

  12. Sinsel, S. R., Riemke, R. L. & Hoffmann, V. H. Challenges and solution technologies for the integration of variable renewable energy sources — a review. Renew. Energy 145, 2271–2285 (2020).

    Article  Google Scholar 

  13. Blaabjerg, F., Yang, Y., Kim, K. A. & Rodriguez, J. Power electronics technology for large-scale renewable energy generation. Proc. IEEE 111, 335–355 (2023). This article highlights the role of power electronics in the integration of renewable energy.

    Article  Google Scholar 

  14. Mahela, O. P. & Shaik, A. G. Comprehensive overview of grid interfaced wind energy generation systems. Renew. Sustain. Energy Rev. 57, 260–281 (2016).

    Article  Google Scholar 

  15. Yao, L., Member, S. & Mao, B. Coordinated frequency control for isolated power systems with high penetration of DFIG-based wind power. CSEE J. Power Energy Syst. https://doi.org/10.17775/CSEEJPES.2021.08320 (2022).

  16. Liu, H. & Liu, C. Frequency regulation of VSC-MTDC system with offshore wind farms. J. Mod. Power Syst. Clean Energy 12, 275–286 (2023).

  17. Chen, Z., Guerrero, J. M. & Blaabjerg, F. A review of the state of the art of power electronics for wind turbines. IEEE Trans. Power Electron. 24, 1859–1875 (2009).

    Article  Google Scholar 

  18. Li, P., Song, Y.-D., Li, D.-Y., Cai, W.-C. & Zhang, K. Control and monitoring for grid-friendly wind turbines: research overview and suggested approach. IEEE Trans. Power Electron. 30, 1979–1986 (2015).

    Article  Google Scholar 

  19. Blaabjerg, F. & Ma, K. Wind energy systems. Proc. IEEE 105, 2116–2131 (2017).

    Article  Google Scholar 

  20. Ortega-Izquierdo, M. & del Río, P. An analysis of the socioeconomic and environmental benefits of wind energy deployment in Europe. Renew. Energy 160, 1067–1080 (2020).

    Article  Google Scholar 

  21. Chinmoy, L., Iniyan, S. & Goic, R. Modeling wind power investments, policies and social benefits for deregulated electricity market — a review. Appl. Energy 242, 364–377 (2019).

    Article  Google Scholar 

  22. Huang, A. Q. Power semiconductor devices for smart grid and renewable energy systems. Proc. IEEE 105, 2019–2047 (2017).

    Article  Google Scholar 

  23. Catalán, P., Wang, Y., Arza, J. & Chen, Z. A comprehensive overview of power converter applied in high-power wind turbine: key challenges and potential solutions. IEEE Trans. Power Electron. 38, 6169–6195 (2023).

    Article  Google Scholar 

  24. Njiri, J. G. & Söffker, D. State-of-the-art in wind turbine control: trends and challenges. Renew. Sustain. Energy Rev. 60, 377–393 (2016).

    Article  Google Scholar 

  25. Li, Y., Fan, L. & Miao, Z. Stability control for wind in weak grids. IEEE Trans. Sustain. Energy 10, 2094–2103 (2019).

    Article  Google Scholar 

  26. Abdul Basit, B. & Jung, J.-W. Recent developments and future research recommendations of control strategies for wind and solar PV energy systems. Energy Rep. 8, 14318–14346 (2022).

    Article  Google Scholar 

  27. Bórawski, P., Bełdycka-Bórawska, A., Jankowski, K. J., Dubis, B. & Dunn, J. W. Development of wind energy market in the European Union. Renew. Energy 161, 691–700 (2020).

    Article  Google Scholar 

  28. Energy Institute. Statistical review of world energy (Energy Institute, 2023).

  29. Blaabjerg, F., Chen, Z., Teodorescu, R. & Iov, F. in CES/IEEE 5th Int. Power Electron. Motion Control Conf. (IEEE, 2006).

  30. Khudri Johari, M., Azim, A., Jalil, M. & Faizal Mohd Shariff, M. Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). Int. J. Eng. Technol. 7, 74 (2018). This article compares the advantages of horizontal axis and vertical axis wind turbines.

    Article  Google Scholar 

  31. Xie, S., Archer, C. L., Ghaisas, N. & Meneveau, C. Benefits of collocating vertical-axis and horizontal-axis wind turbines in large wind farms. Wind Energy 20, 45–62 (2017).

    Article  Google Scholar 

  32. Bai, C.-J. & Wang, W.-C. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renew. Sustain. Energy Rev. 63, 506–519 (2016).

    Article  Google Scholar 

  33. Kumar, R., Raahemifar, K. & Fung, A. S. A critical review of vertical axis wind turbines for urban applications. Renew. Sustain. Energy Rev. 89, 281–291 (2018).

    Article  Google Scholar 

  34. WindEurope. Wind energy in Europe: 2022 statistics and the outlook for 2023–2027 (WindEurope, 2023).

  35. Wang, Y., Qi, D., Zhang, J. & Chen, Y. An optimal over-frequency droop control for DFIG-based wind farm under unreliable communication. CSEE J. Power Energy Syst. https://doi.org/10.17775/CSEEJPES.2021.04360 (2021).

  36. Luo, J., Tong, N., Bu, S., Meng, A. & Yin, H. Internal modal resonance analysis for full converter-based wind generation using analytical inertia model. IEEE Trans. Power Syst. 39, 3509–3522 (2023).

  37. Belabes, B., Youcefi, A., Guerri, O., Djamai, M. & Kaabeche, A. Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria. Renew. Sustain. Energy Rev. 51, 1245–1255 (2015).

    Article  Google Scholar 

  38. Perveen, R., Kishor, N. & Mohanty, S. R. Off-shore wind farm development: present status and challenges. Renew. Sustain. Energy Rev. 29, 780–792 (2014).

    Article  Google Scholar 

  39. Micallef, D. & Rezaeiha, A. Floating offshore wind turbine aerodynamics: trends and future challenges. Renew. Sustain. Energy Rev. 152, 111696 (2021). This article discusses future trends of floating offshore wind turbines.

    Article  Google Scholar 

  40. Otter, A., Murphy, J., Pakrashi, V., Robertson, A. & Desmond, C. A review of modelling techniques for floating offshore wind turbines. Wind Energy 25, 831–857 (2022).

    Article  Google Scholar 

  41. Kumar, D. & Chatterjee, K. A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. Energy Rev. 55, 957–970 (2016).

    Article  Google Scholar 

  42. Li, Z. et al. Power-hardware design and topologies of converter-based grid emulators for wind turbines. IEEE J. Emerg. Sel. Top. Power Electron. 11, 5001–5017 (2023).

  43. Flynn, D. et al. Technical impacts of high penetration levels of wind power on power system stability. Wiley Interdiscip. Rev. Energy Environ. 6, e216 (2017).

    Google Scholar 

  44. Adetokun, B. B., Muriithi, C. M. & Ojo, J. O. Voltage stability assessment and enhancement of power grid with increasing wind energy penetration. Int. J. Electr. Power Energy Syst. 120, 105988 (2020).

    Article  Google Scholar 

  45. Cheng, Y. et al. Real-world subsynchronous oscillation events in power grids with high penetrations of inverter-based resources. IEEE Trans. Power Syst. 38, 316–330 (2023). This article discusses real-world subsynchronous oscillation events with integration of wind power.

    Article  Google Scholar 

  46. Mabel, M. C., Raj, R. E. & Fernandez, E. Analysis on reliability aspects of wind power. Renew. Sustain. Energy Rev. 15, 1210–1216 (2011).

    Article  Google Scholar 

  47. Song, Y., Sahoo, S., Yang, Y. & Blaabjerg, F. Probabilistic risk evaluation of microgrids considering stability and reliability. IEEE Trans. Power Electron. 38, 10302–10312 (2023).

    Article  Google Scholar 

  48. Feng, Q. et al. Resilience design method based on meta-structure: a case study of offshore wind farm. Reliab. Eng. Syst. Saf. 186, 232–244 (2019).

    Article  Google Scholar 

  49. Watson, E. B. & Etemadi, A. H. Modeling electrical grid resilience under hurricane wind conditions with increased solar and wind power generation. IEEE Trans. Power Syst. 35, 929–937 (2020).

    Article  Google Scholar 

  50. National Grid Electricity System Operator. The grid code (National Grid Electricity System Operator, 2023).

  51. Singh, B. & Singh, S. Wind power interconnection into the power system: a review of grid code requirements. Electr. J. 22, 54–63 (2009).

    Article  Google Scholar 

  52. Melhem, B. M. & Liu, S. in 2023 IEEE PES Grid Edge Technol. Conf. Exposition (IEEE, 2023).

  53. Vegunta, S. C., Xu, X., Bishop, M. & Kamalinia, S. in 2020 IEEE/PES Transm. Distrib. Conf. Exposition (IEEE, 2020).

  54. IEEE Standards Association. IEEE Standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces — Amendment 1: To provide more flexibility for adoption of abnormal operating performance categoryy III (IEEE, 2020).

  55. IEEE Power and Energy Society. IEEE Standard for interconnection and interoperability of inverter-based resources (IBRs) interconnecting with associated transmission electric power systems (IEEE, 2022).

  56. International Renewable Energy Agency. Grid codes for renewable powered systems (IRENA, 2022).

  57. Hu, J., Huang, Y., Wang, D., Yuan, H. & Yuan, X. Modeling of grid-connected DFIG-based wind turbines for DC-link voltage stability analysis. IEEE Trans. Sustain. Energy 6, 1325–1336 (2015).

    Article  Google Scholar 

  58. Xu, Y., Nian, H., Wang, T., Chen, L. & Zheng, T. Frequency coupling characteristic modeling and stability analysis of doubly fed induction generator. IEEE Trans. Energy Convers. 33, 1475–1486 (2018).

    Article  Google Scholar 

  59. Nian, H., Xu, Y., Chen, L. & Zhu, M. Modeling and analysis of DC-link dynamics in DFIG system with an indicator function. IEEE Access 7, 125401–125412 (2019).

    Article  Google Scholar 

  60. Zhang, C., Cai, X., Molinas, M. & Rygg, A. Frequency-domain modelling and stability analysis of a DFIG-based wind energy conversion system under non-compensated AC grids: impedance modelling effects and consequences on stability. IET Power Electron. 12, 907–914 (2019).

    Article  Google Scholar 

  61. Zhang, Y., Klabunde, C. & Wolter, M. Frequency-coupled impedance modeling and resonance analysis of DFIG-based offshore wind farm with HVDC connection. IEEE Access 8, 147880–147894 (2020).

    Article  Google Scholar 

  62. Sun, J. & Vieto, I. Development and application of type-III turbine impedance models including DC bus dynamics. IEEE Open J. Power Electron. 1, 513–528 (2020).

    Article  Google Scholar 

  63. Qin, S. et al. Voltage disturbance compensation based on impedance modeling of DFIG under weak grid. Int. J. Electr. Power Energy Syst. 131, 107062 (2021).

    Article  Google Scholar 

  64. Pedra, J., Sainz, L. & Monjo, L. Comparison of small-signal admittance-based models of doubly-fed induction generators. Int. J. Electr. Power Energy Syst. 145, 108654 (2023).

    Article  Google Scholar 

  65. Huang, L. et al. Synchronization and frequency regulation of DFIG-based wind turbine generators with synchronized control. IEEE Trans. Energy Convers. 32, 1251–1262 (2017).

    Article  Google Scholar 

  66. Shao, H. et al. Equivalent modeling and comprehensive evaluation of inertia emulation control strategy for DFIG wind turbine generator. IEEE Access 7, 64798–64811 (2019).

    Article  Google Scholar 

  67. Jiao, Y. & Nian, H. Grid-forming control for DFIG based wind farms to enhance the stability of LCC-HVDC. IEEE Access 8, 156752–156762 (2020).

    Article  Google Scholar 

  68. Oraa, I., Samanes, J., Lopez, J. & Gubia, E. Modeling of a droop-controlled grid-connected DFIG wind turbine. IEEE Access 10, 6966–6977 (2022).

    Article  Google Scholar 

  69. Fischer, K., Besnard, F. & Bertling, L. Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience. IEEE Trans. Energy Convers. 27, 184–195 (2012).

    Article  Google Scholar 

  70. Huang, L., Wu, C., Zhou, D. & Blaabjerg, F. in IECON 2021 47th Annual Conf. IEEE Ind. Electron. Soc. (IEEE, 2021).

  71. Xu, Y., Zhang, M., Fan, L. & Miao, Z. Small-signal stability analysis of type-4 wind in series-compensated networks. IEEE Trans. Energy Convers. 35, 529–538 (2020).

    Article  Google Scholar 

  72. Zhong, Q.-C., Ma, Z., Ming, W.-L. & Konstantopoulos, G. C. Grid-friendly wind power systems based on the synchronverter technology. Energy Convers. Manag. 89, 719–726 (2015).

    Article  Google Scholar 

  73. Ma, Y., Cao, W., Yang, L., Wang, F. F. & Tolbert, L. M. Virtual synchronous generator control of full converter wind turbines with short-term energy storage. IEEE Trans. Ind. Electron. 64, 8821–8831 (2017).

    Article  Google Scholar 

  74. Kim, J., Lee, S. H. & Park, J.-W. Inertia-free stand-alone microgrid — part II: Inertia control for stabilizing DC-link capacitor voltage of PMSG wind turbine system. IEEE Trans. Ind. Appl. 54, 4060–4068 (2018).

    Article  Google Scholar 

  75. Sang, S. et al. Control of a type-IV wind turbine with the capability of robust grid-synchronization and inertial response for weak grid stable operation. IEEE Access 7, 58553–58569 (2019).

    Article  Google Scholar 

  76. Shan, M., Shan, W., Welck, F. & Duckwitz, D. Design and laboratory test of black-start control mode for wind turbines. Wind Energy 23, 763–778 (2020).

    Article  Google Scholar 

  77. Xi, J., Geng, H. & Zou, X. Decoupling scheme for virtual synchronous generator controlled wind farms participating in inertial response. J. Mod. Power Syst. Clean. Energy 9, 347–355 (2021).

    Article  Google Scholar 

  78. Avazov, A., Colas, F., Beerten, J. & Guillaud, X. Application of input shaping method to vibrations damping in a type-IV wind turbine interfaced with a grid-forming converter. Electr. Power Syst. Res. 210, 108083 (2022).

    Article  Google Scholar 

  79. Yuan, H., Xin, H., Wu, D., Wang, W. & Zhou, Y. Small-signal stability assessment of multi- converter-based-renewable systems with STATCOMs based on generalized short-circuit ratio. IEEE Trans. Energy Convers. 37, 2889–2902 (2022).

    Article  Google Scholar 

  80. Yaramasu, V., Wu, B., Sen, P. C., Kouro, S. & Narimani, M. High-power wind energy conversion systems: state-of-the-art and emerging technologies. Proc. IEEE 103, 740–788 (2015). This article presents state-of-the-art technologies of high-power wind energy conversion systems.

    Article  Google Scholar 

  81. Zheng, L., Kandula, R. P. & Divan, D. Current-source solid-state DC transformer integrating LVDC microgrid, energy storage, and renewable energy into MVDC grid. IEEE Trans. Power Electron. 37, 1044–1058 (2022).

    Article  Google Scholar 

  82. Nielsen, J. N. et al. Modelling and fault-ride-through tests of Siemens wind power 3.6 MW variable-speed wind turbines. Wind Eng. 31, 441–452 (2007).

    Article  Google Scholar 

  83. Hu, Q. et al. Impact of LVRT control on transient synchronizing stability of PLL-based wind turbine converter connected to high impedance AC grid. IEEE Trans. Power Syst. 38, 5445–5458 (2022).

  84. Yang, H., Zhang, Y. & Li, M. Duty-cycle correction-based model predictive current control for PMSM drives fed by a three-level inverter with low switching frequency. IEEE Trans. Power Electron. 38, 6841–6850 (2023).

    Article  Google Scholar 

  85. Sztykiel, M. et al. in 2013 15th Eur. Conf. Power Electron. Appl. (IEEE, 2013).

  86. Debnath, S., Qin, J., Bahrani, B., Saeedifard, M. & Barbosa, P. Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30, 37–53 (2015). This article reviews operation, control and application of the modular multilevel converter.

    Article  Google Scholar 

  87. Nami, A., Liang, J., Dijkhuizen, F. & Demetriades, G. D. Modular multilevel converters for HVDC applications: review on converter cells and functionalities. IEEE Trans. Power Electron. 30, 18–36 (2015).

    Article  Google Scholar 

  88. Martinez-Rodrigo, F., Ramirez, D., Rey-Boue, A., de Pablo, S. & Herrero-de Lucas, L. Modular multilevel converters: control and applications. Energies 10, 1709 (2017).

    Article  Google Scholar 

  89. Perez, M. A., Ceballos, S., Konstantinou, G., Pou, J. & Aguilera, R. P. Modular multilevel converters: recent achievements and challenges. IEEE Open. J. Ind. Electron. Soc. 2, 224–239 (2021).

    Article  Google Scholar 

  90. Huang, C., Li, F. & Jin, Z. Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics. IEEE Trans. Ind. Electron. 62, 2530–2539 (2015).

    Article  Google Scholar 

  91. Van, T. L., Nguyen, T. H. & Lee, D.-C. Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems. IEEE Trans. Energy Convers. 30, 578–587 (2015).

    Article  Google Scholar 

  92. Liu, B. et al. Impedance modeling and controllers shaping effect analysis of PMSG wind turbines. IEEE J. Emerg. Sel. Top. Power Electron. 9, 1465–1478 (2021).

    Article  Google Scholar 

  93. Velpula, S., Thirumalaivasan, R. & Janaki, M. Stability analysis on torsional interactions of turbine-generator connected with DFIG-WECS using admittance model. IEEE Trans. Power Syst. 35, 4745–4755 (2020).

    Article  Google Scholar 

  94. Apata, O. & Oyedokun, D. T. O. An overview of control techniques for wind turbine systems. Sci. Afr. 10, e00566 (2020).

    Google Scholar 

  95. Kamruzzaman Khan Prince, M. T., Arif, M., Gargoom, A. M. T., Oo, A. & Enamul Haque, M. Modeling, parameter measurement, and control of PMSG-based grid-connected wind energy conversion system. J. Mod. Power Syst. Clean. Energy 9, 1054–1065 (2021).

    Article  Google Scholar 

  96. Osman, A. M. & Alsokhiry, F. Sliding mode control for grid integration of wind power system based on direct drive PMSG. IEEE Access 10, 26567–26579 (2022).

    Article  Google Scholar 

  97. Feng, S., Wang, K., Lei, J. & Tang, Y. Influences of DC bus voltage dynamics in modulation algorithm on power oscillations in PMSG-based wind farms. Int. J. Electr. Power Energy Syst. 124, 106387 (2021).

    Article  Google Scholar 

  98. Qais, M. H., Hasanien, H. M. & Alghuwainem, S. Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl. Soft Comput. 69, 504–515 (2018).

    Article  Google Scholar 

  99. Qais, M. H., Hasanien, H. M. & Alghuwainem, S. Enhanced salp swarm algorithm: application to variable speed wind generators. Eng. Appl. Artif. Intell. 80, 82–96 (2019).

    Article  Google Scholar 

  100. Abu-Ali, M. et al. Deep learning-based long-horizon MPC: robust, high performing, and computationally efficient control for PMSM drives. IEEE Trans. Power Electron. 37, 12486–12501 (2022). This article presents a case that the developing intelligent control can be integrated into the control of wind power systems.

    Article  Google Scholar 

  101. Bakhtiari, F. & Nazarzadeh, J. Optimal estimation and tracking control for variable-speed wind turbine with PMSG. J. Mod. Power Syst. Clean. Energy 8, 159–167 (2020).

    Article  Google Scholar 

  102. Zhang, Z., Zhao, Y., Qiao, W. & Qu, L. A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines. IEEE Trans. Ind. Appl. 50, 2331–2341 (2014).

    Article  Google Scholar 

  103. Zhang, Z., Zhao, Y., Qiao, W. & Qu, L. A discrete-time direct torque control for direct-drive PMSG-based wind energy conversion systems. IEEE Trans. Ind. Appl. 51, 3504–3514 (2015).

    Article  Google Scholar 

  104. Errouissi, R. & Al-Durra, A. A novel PI-type sliding surface for PMSG-based wind turbine with improved transient performance. IEEE Trans. Energy Convers. 33, 834–844 (2018).

    Article  Google Scholar 

  105. Wei, C., Xu, J., Chen, Q., Song, C. & Qiao, W. Full-order sliding-mode current control of permanent magnet synchronous generator with disturbance rejection. IEEE J. Emerg. Sel. Top. Ind. Electron. 4, 128–136 (2023).

    Article  Google Scholar 

  106. Datta, R. & Joo, Y. H. Fuzzy memory sampled-data controller design for PMSG-based WECS with stochastic packet dropouts. IEEE Trans. Fuzzy Syst. 31, 4421–4434 (2023).

  107. Zhang, J.-Z., Sun, T., Wang, F., Rodriguez, J. & Kennel, R. A computationally efficient quasi-centralized DMPC for back-to-back converter PMSG wind turbine systems without DC-link tracking errors. IEEE Trans. Ind. Electron. 63, 6160–6171 (2016).

    Article  Google Scholar 

  108. Jlassi, I. & Marques Cardoso, A. J. Enhanced and computationally efficient model predictive flux and power control of PMSG drives for wind turbine applications. IEEE Trans. Ind. Electron. 68, 6574–6583 (2021).

    Article  Google Scholar 

  109. Babaghorbani, B., Beheshti, M. T. & Talebi, H. A. A Lyapunov-based model predictive control strategy in a permanent magnet synchronous generator wind turbine. Int. J. Electr. Power Energy Syst. 130, 106972 (2021).

    Article  Google Scholar 

  110. Soliman, M. A., Hasanien, H. M., Moursi, M. S. E. & Al-Durra, A. Chaotic-billiards optimization algorithm-based optimal FLC approach for stability enhancement of grid-tied wind power plants. IEEE Trans. Power Syst. 37, 3614–3629 (2022).

    Article  Google Scholar 

  111. Zheng, X., Feng, Y., Han, F. & Yu, X. Integral-type terminal sliding-mode control for grid-side converter in wind energy conversion systems. IEEE Trans. Ind. Electron. 66, 3702–3711 (2019).

    Article  Google Scholar 

  112. He, Y. et al. Direct predictive voltage control for grid-connected permanent magnet synchronous generator system. IEEE Trans. Ind. Electron. 70, 10860–10870 (2023).

    Article  Google Scholar 

  113. Du, C., Du, X., Tong, C., Li, Y. & Zhou, P. Stability analysis for DFIG-based wind farm grid-connected system under all wind speed conditions. IEEE Trans. Ind. Appl. 59, 2430–2445 (2023).

    Article  Google Scholar 

  114. Li, S. Converters’ loading balance and stability verification for doubly-fed induction generator. CSEE J. Power Energy Syst. https://doi.org/10.17775/CSEEJPES.2021.01260 (2022).

  115. Pradhan, P. P., Subudhi, B. & Ghosh, A. A robust multiloop disturbance rejection controller for a doubly fed induction generator-based wind energy conversion system. IEEE J. Emerg. Sel. Top. Power Electron. 10, 6266–6273 (2022).

    Article  Google Scholar 

  116. Shi, F., Shu, D., Yan, Z. & Song, Z. A shifted frequency impedance model of doubly fed induction generator (DFIG)-based wind farms and its applications on S2SI analysis. IEEE Trans. Power Electron. 36, 215–227 (2021).

    Article  Google Scholar 

  117. Ayyarao, T. S. L. V. Modified vector controlled DFIG wind energy system based on barrier function adaptive sliding mode control. Prot. Control. Mod. Power Syst. 4, 4 (2019).

    Article  Google Scholar 

  118. Zhang, Y., Zhang, S., Jiang, T., Jiao, J. & Xu, W. A modified model-free predictive current control method based on an extended finite control set for DFIGs applied to a nonideal grid. IEEE Trans. Ind. Appl. 58, 2527–2536 (2022).

    Article  Google Scholar 

  119. Bourdoulis, M. K. & Alexandridis, A. T. Direct power control of DFIG wind systems based on nonlinear modeling and analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2, 764–775 (2014).

    Article  Google Scholar 

  120. Mohammadi, J., Vaez-Zadeh, S., Afsharnia, S. & Daryabeigi, E. A combined vector and direct power control for DFIG-based wind turbines. IEEE Trans. Sustain. Energy 5, 767–775 (2014).

    Article  Google Scholar 

  121. Zhang, Y., Hu, J. & Zhu, J. Three-vectors-based predictive direct power control of the doubly fed induction generator for wind energy applications. IEEE Trans. Power Electron. 29, 3485–3500 (2014).

    Article  Google Scholar 

  122. Gao, S., Zhao, H., Gui, Y., Zhou, D. & Blaabjerg, F. An improved direct power control for doubly fed induction generator. IEEE Trans. Power Electron. 36, 4672–4685 (2021).

    Article  Google Scholar 

  123. Liu, X. & Kong, X. Nonlinear model predictive control for DFIG-based wind power generation. IEEE Trans. Autom. Sci. Eng. 11, 1046–1055 (2014).

    Article  Google Scholar 

  124. Errouissi, R., Al-Durra, A., Muyeen, S. M., Leng, S. & Blaabjerg, F. Offset-free direct power control of DFIG under continuous-time model predictive control. IEEE Trans. Power Electron. 32, 2265–2277 (2017).

    Article  Google Scholar 

  125. Kou, P., Liang, D., Li, J., Gao, L. & Ze, Q. Finite-control-set model predictive control for DFIG wind turbines. IEEE Trans. Autom. Sci. Eng. 15, 1004–1013 (2018).

    Article  Google Scholar 

  126. Amin, I. K. & Uddin, M. N. Nonlinear control operation of DFIG-based WECS incorporated with machine loss reduction scheme. IEEE Trans. Power Electron. 35, 7031–7044 (2020).

    Article  Google Scholar 

  127. Hu, Y. et al. A novel adaptive model predictive control strategy for DFIG wind turbine with parameter variations in complex power systems. IEEE Trans. Power Syst. 38, 4582–4592 (2022).

  128. Conde, D. E. R., Lunardi, A. & Filho, A. J. S. Current control for DFIG systems under distorted voltage using predictive–repetitive control. IEEE J. Emerg. Sel. Top. Power Electron. 9, 4354–4363 (2021).

    Article  Google Scholar 

  129. Conde, D. E. R., Lunardi, A., Normandia Lourenco, L. F. & Filho, A. J. S. A predictive repetitive current control in stationary reference frame for DFIG systems under distorted voltage operation. IEEE J. Emerg. Sel. Top. Power Electron. 10, 5809–5818 (2022).

    Article  Google Scholar 

  130. Energinet. Requirements laid down under EU Regulation 2016 / 631 — requirements for grid connection of generators (RfG) (Energinet, 2019).

  131. European Union. Commission Regulation (EU) 2016/631 — establishing a network code on requirements for grid connection of cenerators (EU, 2016).

  132. Gupta, A. P., Mitra, A., Mohapatra, A. & Singh, S. N. A multi-machine equivalent model of a wind farm considering LVRT characteristic and wake effect. IEEE Trans. Sustain. Energy 13, 1396–1407 (2022).

    Article  Google Scholar 

  133. Hu, J. et al. Small signal dynamics of DFIG-based wind turbines during riding through symmetrical faults in weak AC grid. IEEE Trans. Energy Convers. 32, 720–730 (2017). This article studies the potential small-signal instability issue of DFIG-based wind turbines during LVRT.

    Article  Google Scholar 

  134. Hu, Q., Ji, F., Ma, F., Yan, Z. & Fu, L. Matching analysis of LVRT grid code and injection current dependent voltage response of WTC connected to high impedance AC grid. IEEE Trans. Energy Convers. 37, 2236–2239 (2022).

    Google Scholar 

  135. Chang, Y., Hu, J. & Yuan, X. Mechanism analysis of DFIG-based wind turbine’s fault current during LVRT with equivalent inductances. IEEE J. Emerg. Sel. Top. Power Electron. 8, 1515–1527 (2020).

    Article  Google Scholar 

  136. Zhou, A., Li, Y. W. & Mohamed, Y. Mechanical stress comparison of PMSG wind turbine LVRT methods. IEEE Trans. Energy Convers. 36, 682–692 (2021).

    Article  Google Scholar 

  137. Basak, R., Bhuvaneswari, G. & Pillai, R. R. Low-voltage ride-through of a synchronous generator-based variable speed grid-interfaced wind energy conversion system. IEEE Trans. Ind. Appl. 56, 752–762 (2020).

    Article  Google Scholar 

  138. Jabbour, N., Tsioumas, E., Mademlis, C. & Solomin, E. A highly effective fault-ride-through strategy for a wind energy conversion system with a doubly fed induction generator. IEEE Trans. Power Electron. 35, 8154–8164 (2020).

    Article  Google Scholar 

  139. Kabsha, M. M. & Rather, Z. H. Advanced LVRT control scheme for offshore wind power plant. IEEE Trans. Power Deliv. 36, 3893–3902 (2021).

    Article  Google Scholar 

  140. Chen, S. et al. Transient stability analysis and improved control strategy for DC-link voltage of DFIG-based WT during LVRT. IEEE Trans. Energy Convers. 37, 880–891 (2022).

    Article  Google Scholar 

  141. Alsmadi, Y. M. et al. Detailed investigation and performance improvement of the dynamic behavior of grid-connected DFIG-based wind turbines under LVRT conditions. IEEE Trans. Ind. Appl. 54, 4795–4812 (2018).

    Article  Google Scholar 

  142. Liu, R. et al. Dynamic stability analysis and improved LVRT schemes of DFIG-based wind turbines during a symmetrical fault in a weak grid. IEEE Trans. Power Electron. 35, 303–318 (2020).

    Article  Google Scholar 

  143. Guan, L. & Yao, J. A novel PLL structure for dynamic stability improvement of DFIG-based wind energy generation systems during asymmetric LVRT. J. Mod. Power Syst. Clean. Energy 11, 1149–1164 (2023).

    Article  Google Scholar 

  144. Liu, H. et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks. IEEE Trans. Power Syst. 32, 4708–4720 (2017).

    Article  Google Scholar 

  145. Zhai, W., Jia, Q. & Yan, G. Analysis of sub synchronous oscillation characteristics from a direct drive wind farm based on the complex torque coefficient method. CSEE J. Power Energy Syst. https://doi.org/10.17775/CSEEJPES.2021.05760 (2021).

  146. Mohammadpour, H. A. & Santi, E. SSR damping controller design and optimal placement in rotor-side and grid-side converters of series-compensated DFIG-based wind farm. IEEE Trans. Sustain. Energy 6, 388–399 (2015).

    Article  Google Scholar 

  147. Chen, A., Xie, D., Zhang, D., Gu, C. & Wang, K. PI parameter tuning of converters for sub-synchronous interactions existing in grid-connected DFIG wind turbines. IEEE Trans. Power Electron. 34, 6345–6355 (2019).

    Article  Google Scholar 

  148. Wang, Y., Wu, Q., Yang, R., Tao, G. & Liu, Z. H current damping control of DFIG based wind farm for sub-synchronous control interaction mitigation. Int. J. Electr. Power Energy Syst. 98, 509–519 (2018).

    Article  Google Scholar 

  149. Chowdhury, M. A. & Shafiullah, G. M. SSR mitigation of series-compensated DFIG wind farms by a nonlinear damping controller using partial feedback linearization. IEEE Trans. Power Syst. 33, 2528–2538 (2018).

    Article  Google Scholar 

  150. Karunanayake, C., Ravishankar, J. & Dong, Z. Y. Nonlinear SSR damping controller for DFIG based wind generators interfaced to series compensated transmission systems. IEEE Trans. Power Syst. 35, 1156–1165 (2020).

    Article  Google Scholar 

  151. Shair, J., Xie, X., Li, Y. & Terzija, V. Hardware-in-the-loop and field validation of a rotor-side subsynchronous damping controller for a series compensated DFIG system. IEEE Trans. Power Deliv. 36, 698–709 (2021).

    Article  Google Scholar 

  152. Shair, J., Xie, X., Yang, J., Li, J. & Li, H. Adaptive damping control of subsynchronous oscillation in DFIG-based wind farms connected to series-compensated network. IEEE Trans. Power Deliv. 37, 1036–1049 (2022).

    Article  Google Scholar 

  153. Wu, X. et al. Mitigating subsynchronous oscillation using model-free adaptive control of DFIGs. IEEE Trans. Sustain. Energy 14, 242–253 (2023).

    Article  Google Scholar 

  154. Li, H., Shair, J., Zhang, J. & Xie, X. Investigation of subsynchronous oscillation in a DFIG-based wind power plant connected to MTDC grid. IEEE Trans. Power Syst. 38, 3222–3231 (2022).

    Google Scholar 

  155. Li, H., Xie, X., Shair, J., Liu, R. & Xu, J. Mitigating SSO in an actual DFIG-MTDC system: field implementation and tests. IEEE Trans. Power Syst. 39, 2998–3007 (2023).

  156. Wilches-Bernal, F., Chow, J. H. & Sanchez-Gasca, J. J. A fundamental study of applying wind turbines for power system frequency control. IEEE Trans. Power Syst. 31, 1496–1505 (2016).

    Article  Google Scholar 

  157. Li, H., Qiao, Y., Lu, Z., Zhang, B. & Teng, F. Frequency-constrained stochastic planning towards a high renewable target considering frequency response support from wind power. IEEE Trans. Power Syst. 36, 4632–4644 (2021).

    Article  Google Scholar 

  158. Kang, M., Muljadi, E., Hur, K. & Kang, Y. C. Stable adaptive inertial control of a doubly-fed induction generator. IEEE Trans. Smart Grid 7, 2971–2979 (2016).

    Article  Google Scholar 

  159. Kang, M., Kim, K., Muljadi, E., Park, J.-W. & Kang, Y. C. Frequency control support of a doubly-fed induction generator based on the torque limit. IEEE Trans. Power Syst. 31, 4575–4583 (2016).

    Article  Google Scholar 

  160. Gu, W. et al. Torque limit-based inertial control method based on delayed support for primary. J. Mod. Power Syst. Clean Energy https://doi.org/10.35833/MPCE.2022.000773 (2023).

  161. Kheshti, M. et al. Gaussian distribution-based inertial control of wind turbine generators for fast frequency response in low inertia systems. IEEE Trans. Sustain. Energy 13, 1641–1653 (2022).

    Article  Google Scholar 

  162. Kheshti, M. et al. Toward intelligent inertial frequency participation of wind farms for the grid frequency control. IEEE Trans. Ind. Inform. 16, 6772–6786 (2020).

    Article  Google Scholar 

  163. Attya, A. B., Dominguez-Garcia, J. L. & Anaya-Lara, O. A review on frequency support provision by wind power plants: current and future challenges. Renew. Sustain. Energy Rev. 81, 2071–2087 (2018).

    Article  Google Scholar 

  164. Bonfiglio, A., Invernizzi, M., Labella, A. & Procopio, R. Design and implementation of a variable synthetic inertia controller for wind turbine generators. IEEE Trans. Power Syst. 34, 754–764 (2019).

    Article  Google Scholar 

  165. Wang, S. & Tomsovic, K. Fast frequency support from wind turbine generators with auxiliary dynamic demand control. IEEE Trans. Power Syst. 34, 3340–3348 (2019).

    Article  Google Scholar 

  166. Lyu, X. & Groß, D. Grid forming fast frequency response for PMSG-based wind turbines. IEEE Trans. Sustain. Energy 15, 23–38 (2023). This article investigates the permanent magnet synchronous generator participating in frequency regulation in a promising grid-forming way.

    Article  Google Scholar 

  167. Du, W., Dong, W., Wang, Y. & Wang, H. Small-disturbance stability of a wind farm with virtual synchronous generators under the condition of weak grid connection. IEEE Trans. Power Syst. 36, 5500–5511 (2021).

    Article  Google Scholar 

  168. Awal, M. A. & Husain, I. Unified virtual oscillator control for grid-forming and grid-following converters. IEEE J. Emerg. Sel. Top. Power Electron. 9, 4573–4586 (2021).

    Article  Google Scholar 

  169. Li, Y. et al. Novel grid-forming control of PMSG-based wind turbine for integrating weak AC grid without sacrificing maximum power point tracking. IET Gener. Transm. Distrib. 15, 1613–1625 (2021).

    Article  Google Scholar 

  170. He, G., Wang, W. & Wang, H. Coordination control method for multi-wind farm systems to prevent sub/super-synchronous oscillations. CSEE J. Power Energy Syst. (2021).

  171. Li, M., Li, Y. & Choi, S. S. Dispatch planning of a wide-area wind power-energy storage scheme based on ensemble empirical mode decomposition technique. IEEE Trans. Sustain. Energy 12, 1275–1288 (2021).

    Article  Google Scholar 

  172. Lyu, X., Jia, Y., Liu, T. & Chai, S. System-oriented power regulation scheme for wind farms: the quest for uncertainty management. IEEE Trans. Power Syst. 36, 4259–4269 (2021).

    Article  Google Scholar 

  173. Dong, H. & Zhao, X. Data-driven wind farm control via multiplayer deep reinforcement learning. IEEE Trans. Control. Syst. Technol. 31, 1468–1475 (2023).

    Article  Google Scholar 

  174. Falck, J., Felgemacher, C., Rojko, A., Liserre, M. & Zacharias, P. Reliability of power electronic systems: An industry perspective. IEEE Ind. Electron. Mag. 12, 24–35 (2018). This article introduces the reliability of power electronic systems from an industry perspective.

    Article  Google Scholar 

  175. Energinet. Technical market dialogue — Energy Island Bornholm (Energinet, 2023).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made a substantial contribution to discussion of content. M.C. and L.H. wrote the article. F.B. and L.H. reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Frede Blaabjerg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Ke Ma, Li Ran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaabjerg, F., Chen, M. & Huang, L. Power electronics in wind generation systems. Nat Rev Electr Eng 1, 234–250 (2024). https://doi.org/10.1038/s44287-024-00032-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00032-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing