Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Daytime radiative cooling dressings for accelerating wound healing under sunlight

Abstract

The process of wound healing is sensitive to various factors of the local environment, including temperature, humidity and sterility. However, due to lack of efficient thermal regulation in existing wound dressings, the perturbed local environment and oxidative stress caused by an increased wound temperature under outdoor sunlight inevitably impacts wound healing. Here we demonstrate a daytime radiative cooling dressing based on a polyamide 6/silk fibroin bilayer that reduces the thermal load for skin wounds under sunlight illumination. The mid-infrared transparent polyamide 6 and the biocompatible silk fibroin together endow a high mid-infrared emissivity (~0.94) and sunlight reflectivity (~0.96), thus achieving a temperature of ~7 °C below ambient under direct sunlight. When used for repairing mouse skin full-thickness injuries under sunlight, we observed an accelerated wound healing rate compared with that of commercial dressings. This work therefore offers a promising strategy for passive temperature regulation to accelerate wound healing under sunlight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the structural design of DRC dressings for local wound environment management under sunlight and its working mechanism.
Fig. 2: The structures and physical properties of the DRC dressing.
Fig. 3: Radiative cooling performance measurements of the DRC dressings.
Fig. 4: Treatment evaluation of the DRC dressing for full-thickness injury under sunlight.
Fig. 5: RNA sequencing of wounds handled by DRC dressings.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Source data are provided with this paper.

References

  1. Kurita, M. et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature 561, 243–247 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pearson, J., Lucas, R. A. I. & Crandall, C. G. Elevated local skin temperature impairs cutaneous vasoconstrictor responses to a simulated haemorrhagic challenge while heat stressed. Exp. Physiol. 98, 444–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Chakraborty, U. & Pradhan, D. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J. Plant Interact. 6, 43–52 (2011).

    Article  Google Scholar 

  4. Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Membré, J.-M. et al. Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food. Int. J. Food Microbiol. 100, 179–186 (2005).

    Article  PubMed  Google Scholar 

  6. Junker, J. P. E., Caterson, E. J. & Eriksson, E. The microenvironment of wound healing. J. Craniofac. Surg. 24, 12–16 (2013).

    Article  PubMed  Google Scholar 

  7. Dhivya, S., Padma, V. V. & Santhini, E. Wound dressings—a review. BioMedicine 5, 24–28 (2015).

    Article  Google Scholar 

  8. Fan, S. & Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022).

    Article  CAS  Google Scholar 

  9. Yin, X., Yang, R., Tan, G. & Fan, S. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, K. et al. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21, 1493–1499 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Tang, K. et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374, 1504–1509 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Lin, C. et al. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34, 2109350 (2022).

    Article  CAS  Google Scholar 

  14. Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Zeng, S. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Miao, D., Cheng, N., Wang, X., Yu, J. & Ding, B. Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22, 680–687 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Cai, L. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, 1802152 (2018).

    Article  Google Scholar 

  18. Zhang, X. et al. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16, 2188–2197 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Mandal, J., Yang, Y., Yu, N. & Raman, A. P. Paints as a scalable and effective radiative cooling technology for buildings. Joule 4, 1350–1356 (2020).

    Article  Google Scholar 

  20. Li, X. et al. Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit. Cell Rep. Phys. Sci. 1, 100221 (2020).

    Article  CAS  Google Scholar 

  21. Huang, W. et al. Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 31, 2010334 (2021).

    Article  CAS  Google Scholar 

  22. Schreml, S. et al. The impact of the pH value on skin integrity and cutaneous wound healing. J. Eur. Acad. Dermatol. Venereol. 24, 373–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Farokhi, M., Mottaghitalab, F., Fatahi, Y., Khademhosseini, A. & Kaplan, D. L. Overview of silk fibroin use in wound dressings. Trends Biotechnol. 36, 907–922 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Gray, M. et al. Moisture-associated skin damage: overview and pathophysiology. J.Wound Ostomy Continence Nurs. 38, 233–241 (2011).

    Article  PubMed  Google Scholar 

  25. Xu, R. et al. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep. 6, 24596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao, Z. et al. Antibacterial hybrid hydrogels. Macromol. Biosci. 21, 2000252 (2021).

    Article  CAS  Google Scholar 

  27. Krizek, T. J. & Robson, M. C. Evolution of quantitative bacteriology in wound management. Am. J. Surg. 130, 579–584 (1975).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, W. et al. Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial. Adv. Healthcare Mater. 6, 1700121 (2017).

    Article  Google Scholar 

  29. Zhu, B. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16, 1342–1348 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. He, J. et al. Scalable nanofibrous silk fibroin textile with excellent Mie scattering and high sweat evaporation ability for highly efficient passive personal thermal management. Chem. Eng. J. 466, 143127 (2023).

    Article  CAS  Google Scholar 

  31. Chen, Y.-H. et al. Eco-friendly transparent silk fibroin radiative cooling film for thermal management of optoelectronics. Adv. Funct. Mater. 33, 2301924 (2023).

    Article  CAS  Google Scholar 

  32. Yang, Z. & Zhang, J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl. Mater. Interfaces 13, 43387–43395 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Cheng, J., Jun, Y., Qin, J. & Lee, S.-H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114, 121–143 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Dong, Y. et al. Electrospun nanofibrous materials for wound healing. Adv. Fiber Mater. 2, 212–227 (2020).

    Article  CAS  Google Scholar 

  35. Ye, Z. et al. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chem. Eng. J. 420, 127680 (2021).

    Article  CAS  Google Scholar 

  36. Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article  PubMed  Google Scholar 

  37. Liang, X. et al. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv. Funct. Mater. 32, 2200162 (2022).

    Article  CAS  Google Scholar 

  38. Yang, Y. et al. Influence of fabric structure and finishing pattern on the thermal and moisture management properties of unidirectional water transport knitted polyester fabrics. Text. Res. J. 89, 1983–1996 (2018).

    Article  Google Scholar 

  39. Zhao, D. et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019).

    Article  CAS  Google Scholar 

  40. Hsu, P.-C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    Article  PubMed  Google Scholar 

  41. Chen, Z. et al. Differential distribution and genetic determination of eccrine sweat glands and hair follicles in the volar skin of C57BL/6 mice and SD rats. BMC Vet. Res. 18, 316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, G. et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl Acad. Sci. USA 108, 20976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grandahl, K. et al. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility. Biomed. Eng. Online. 16, 119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vickman, R. E. et al. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease. Nat. Commun. 13, 2133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, Y. et al. β-Arrestin1 enhances hepatocellular carcinogenesis through inflammation-mediated akt signalling. Nat. Commun. 6, 7369 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Ritchie, D. J. & Friesen, C. R. Invited review: thermal effects on oxidative stress in vertebrate ectotherms. Comp. Biochem. Physiol. A. 263, 111082 (2022).

    Article  CAS  Google Scholar 

  47. Harn, H. I. C. et al. Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice. Nat. Commun. 12, 2595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, H. et al. Engineered sandwich-structured composite wound dressings with unidirectional drainage and anti-adhesion supporting accelerated wound healing. Adv. Healthcare Mater. 12, 2202685 (2023).

    Article  CAS  Google Scholar 

  49. Liu, H. et al. Role of polydopamine’s redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomater. 88, 181–196 (2019).

    Article  PubMed  Google Scholar 

  50. Zhang, T. et al. Determining the optimal stage for cryopreservation of human embryonic stem cell-derived retinal pigment epithelial cells. Stem Cell Res. Ther. 13, 454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the micro-fabrication center of National Laboratory of Solid-State Microstructures (NLSSM) for technique support. J.Z. acknowledges support from XPLORER PRIZE. B.Z. and J.Z. acknowledge support from the National Key Research and Development Program of China (grant nos. 2022YFA1404704, 2017YFA0205700). Q.Z., W.L., W.X., B.Z. and J.Z. acknowledge support from National Natural Science Foundation of China Programs (grant nos. 52372197, 51925204, 52002168, 52303323, 62134009, 62121005, U21A2095). B.Z. acknowledges support from the Natural Science Foundation of Jiangsu Province (BK20231540). B.Z. and J.Z. acknowledge support from Key Science and Technology Inovation Program of Shandong Province (grant no. 2019JZZY020704), Excellent Research Program of Nanjing University (grant no. ZYJH005), research foundation of Frontiers Science Center for Critical Earth Material Cycling (grant no. 14380214), and the Fundamental Research Funds for the Central Universities (grant nos. 021314380184, 021314380208, 021314380190, 021314380140, 021314380150). W.X. acknowledges support from the Key Research and Development Program of Hubei Province (grant nos. 2021BAA068, 2020DGC003). Q.Z. acknowledges support from Natural Science Foundation of Hubei Province (grant no. 2023AFB265) and China Postdoctoral Science Foundation (grant no. 2021M691488). C.Q. acknowledges support from Knowledge innovation special project of Wuhan Science and Technology Bureau (grant no. 2023020201010181) and ~2023–2024 Traditional Chinese Medicine Research Project of Hubei Administration of Traditional Chinese Medicine (grant no. ZY2023Q018). Q.Z. and B.Z. acknowledge support from State Key Laboratory of New Textile Materials and Advanced Processing Technologies (Wuhan Textile University, grant nos. FZ2022011, FZ20230021).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z., B.Z., and J.Z. conceived and planned this research. Q.Z. and X.W. performed the materials experiments. The biomedical and animal experiments were performed by collaborators of C.Q. and S.H.. W.L., X.X. and H.F. contributed to the optical modeling and thermal analysis. Q.Z., X.W., C.Q., B.Z., S.Z., W.X. and J.Z. organized the data and wrote the paper. All the authors discussed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Bin Zhu, Weilin Xu or Jia Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Chi-Yan Tso and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The measured (solid line) and simulated (dashed line) temperatures of the skin simulator covered with different dressings under direct sunlight.

The measured (solid line) and simulated (dashed line) temperatures of the skin simulator covered with different dressings under direct sunlight. The simulated parameters are as follows: the power of solar radiation is 1,069 W m–2, the ambient temperature is ~33.5 °C and the wind speed is ~2.8 m s–1.

Source data

Supplementary information

Supplementary Information

Supplementary Note 1, Table 1 and Figs. 1–49.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Qi, C., Wang, X. et al. Daytime radiative cooling dressings for accelerating wound healing under sunlight. Nat Chem Eng 1, 301–310 (2024). https://doi.org/10.1038/s44286-024-00050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00050-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research