Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design and diagnosis of high-performance CO2-to-CO electrolyzer cells

Abstract

This work reports the design and diagnostic analysis of a pH-neutral CO2-to-CO zero-gap electrolyzer cell incorporating a nickel–nitrogen-doped carbon catalyst. The cell yields ~100% CO faradaic efficiency at applied current densities of up to 250 mA cm−2 at low cell voltage and 40% total energy efficiency. It features a low stoichiometric CO2 excess, λstoich, of 1.2 that yields a molar CO concentration of ~70%vol in the electrolyzer exit stream at 40% single-pass CO2 conversion, with over 100 h stability. Here we introduce the experimental carbon crossover coefficient (CCC) as a tool for electrolyzer cell diagnostics. The CCC describes the ratio between noncatalytic acid–base CO2 consumption and catalytically generated alkalinity, thereby offering insight into the nature of the prevalent ionic transport and transport mechanisms of undesired CO2 losses. We demonstrate the diagnostic value of the CCC in transport-based cell failure during oscillatory cell flooding between salt precipitation and salt redissolution. The present dynamic cell diagnostics provide practical guidelines toward improved CO2 electrolyzer designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CO2 valorization using coupled ‘tandem’ electrolyzer cells.
Fig. 2: Synthesis, characterization and H-cell performance screening.
Fig. 3: CO2 electrolyzer performance tests in neutral-pH, zero-gap cell configurations.
Fig. 4: CO2 consumption, CCC and stoichiometric excess.
Fig. 5: Cell diagnosis using the CCC and FECO.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the main text and Supplementary Information. Source data are provided with this paper.

References

  1. Global energy review 2020. IEA www.iea.org/reports/global-energy-review-2020 (2020).

  2. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Google Scholar 

  3. Jourdin, L., Sousa, J., van Stralen, N. & Strik, D. P. B. T. B. Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: an interdisciplinary roadmap towards future research and application. Appl. Energy 279, 115775 (2020).

    CAS  Google Scholar 

  4. Kibria, M. G. et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 1807166 (2019).

    Google Scholar 

  5. Lin, R., Guo, J., Li, X., Patel, P. & Seifitokaldani, A. Electrochemical reactors for CO2 conversion. Catalysts 10, 473 (2020).

    CAS  Google Scholar 

  6. Verma, S., Kim, B., Jhong, H.-R. M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

    CAS  PubMed  Google Scholar 

  7. Luna De, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    ADS  Google Scholar 

  8. Jhong, H.-R. M., Ma, S. & Kenis, P. J. A. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).

    Google Scholar 

  9. Küngas, R. Review—electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).

    ADS  Google Scholar 

  10. Lee, M.-Y. et al. Current achievements and the future direction of electrochemical CO2 reduction: a short review. Crit. Rev. Environ. Sci. Technol. 50, 769–815 (2020).

    CAS  Google Scholar 

  11. Alerte, T. et al. Downstream of the CO2 electrolyzer: assessing the energy intensity of product separation. ACS Energy Lett. 6, 4405–4412 (2021).

    CAS  Google Scholar 

  12. Siahrostami, S., Bjorketun, M. E., Strasser, P., Greeley, J. & Rossmeisl, J. Tandem cathode for proton exchange membrane fuel cells. Phys. Chem. Chem. Phys. 15, 9326–9334 (2013).

    CAS  PubMed  Google Scholar 

  13. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    CAS  Google Scholar 

  14. Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    CAS  Google Scholar 

  15. Tornow, C. E., Thorson, M. R., Ma, S., Gewirth, A. A. & Kenis, P. J. A. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J. Am. Chem. Soc. 134, 19520–19523 (2012).

    CAS  PubMed  Google Scholar 

  16. Nam, D.-H. et al. Intermediate binding control using metal–organic frameworks enhances electrochemical CO2 reduction. J. Am. Chem. Soc. 142, 21513–21521 (2020).

    CAS  PubMed  Google Scholar 

  17. Kim, B., Hillman, F., Ariyoshi, M., Fujikawa, S. & Kenis, P. J. A. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO. J. Power Sources 312, 192–198 (2016).

    CAS  ADS  Google Scholar 

  18. Lee, W. H. et al. Highly selective and scalable CO2 to CO—electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy 76, 105030 (2020).

    CAS  Google Scholar 

  19. Dinh, C.-T., García de Arquer, F. P., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    CAS  Google Scholar 

  20. Nwabara, U. O., Cofell, E. R., Verma, S., Negro, E. & Kenis, P. J. A. Durable cathodes and electrolyzers for the efficient aqueous electrochemical reduction of CO2. ChemSusChem 13, 855–875 (2020).

    CAS  PubMed  Google Scholar 

  21. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow Cell. Acc. Chem. Res. 51, 910–918 (2018).

    CAS  PubMed  Google Scholar 

  22. Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13, 15132–15142 (2021).

    CAS  PubMed  Google Scholar 

  23. Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D. & Masel, R. I. Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front. Chem. 6, 263 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  24. Cofell, E. R. et al. Potential cycling of silver cathodes in an alkaline CO2 flow electrolyzer for accelerated stress testing and carbonate inhibition. ACS Appl. Energy Mater. 5, 12013–12021 (2022).

    CAS  Google Scholar 

  25. Hersbach, T. J. P. et al. Alkali metal cation effects in structuring Pt, Rh, and Au surfaces through cathodic corrosion. ACS Appl. Mater. Interfaces 10, 39363–39379 (2018).

    CAS  PubMed  Google Scholar 

  26. Hersbach, T. J. P. & Koper, M. T. M. Cathodic corrosion: 21st century insights into a 19th century phenomenon. Curr. Opin. Electrochem. 26, 100653 (2021).

    CAS  Google Scholar 

  27. Varela, A. S. et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015).

    CAS  Google Scholar 

  28. Torbensen, K. et al. Molecular catalysts boost the rate of electrolytic CO2 reduction. ACS Energy Lett. 5, 1512–1518 (2020).

    CAS  Google Scholar 

  29. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    CAS  ADS  PubMed  Google Scholar 

  30. Nguyen, T. N., Salehi, M., van Le, Q., Seifitokaldani, A. & Dinh, C. T. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 10, 10068–10095 (2020).

    Google Scholar 

  31. Möller, T. et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019).

    Google Scholar 

  32. Zhang, T. et al. Nickel–nitrogen–carbon molecular catalysts for high-rate CO2 electro-reduction to CO: on the role of carbon substrate and reaction chemistry. ACS Appl. Energy Mater. 3, 1617–1626 (2020).

    CAS  Google Scholar 

  33. Ju, W. et al. Understanding activity and selectivity of metal–nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  34. Gang, Y. et al. One-step chemical vapor deposition synthesis of hierarchical Ni and N co-doped carbon nanosheet/nanotube hybrids for efficient electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 11, 10333–10344 (2021).

    CAS  Google Scholar 

  35. Wang, R. et al. Maximizing Ag utilization in high-rate CO2 electrochemical reduction with a coordination polymer-mediated gas diffusion electrode. ACS Energy Lett. 4, 2024–2031 (2019).

    CAS  ADS  Google Scholar 

  36. Ma, S., Lan, Y., Perez, G. M., Moniri, S. & Kenis, P. J. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. ChemSusChem 7, 866–874 (2014).

    CAS  PubMed  Google Scholar 

  37. Gabardo, C. M. et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 11, 2531–2539 (2018).

    CAS  Google Scholar 

  38. Li, C. et al. Covalent organic framework (COF)-derived Ni–N–C catalysts for electrochemical CO2 reduction: unraveling fundamental kinetic and structural parameters of the active sites. Angew. Chem. Int. Ed. 61, e202114707 (2022).

    CAS  ADS  Google Scholar 

  39. Koshy, D. M. et al. Understanding the origin of highly selective CO2 electroreduction to CO on Ni,N-doped carbon catalysts. Angew. Chem. Int. Ed. 59, 4043–4050 (2020).

    CAS  Google Scholar 

  40. Zhang, H. et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12, 2548–2558 (2019).

    CAS  Google Scholar 

  41. Jakub, Z. et al. Nickel doping enhances the reactivity of Fe3O4(001) to water. J. Phys. Chem. C 123, 15038–15045 (2019).

    CAS  Google Scholar 

  42. Liu, S. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single‐atom nickel catalyst. Angew. Chem. Int. Ed. 59, 798–803 (2020).

    CAS  Google Scholar 

  43. Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    CAS  ADS  Google Scholar 

  44. Soriano, L. et al. Surface effects in the Ni 2p x-ray photoemission spectra of NiO. Phys. Rev. B 75, 233417 (2007).

    ADS  Google Scholar 

  45. Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).

    CAS  Google Scholar 

  46. Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    PubMed  Google Scholar 

  47. Larrazábal, G. O., Ma, M. & Seger, B. A comprehensive approach to investigate CO2 reduction electrocatalysts at high current densities. Acc. Mater. Res. 2, 220–229 (2021).

    Google Scholar 

  48. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    CAS  Google Scholar 

  49. Wang, J. et al. Design of NiNC single atom catalyst layers and AEM electrolyzers for stable and efficient CO2-to-CO electrolysis: correlating ionomer and cell performance. Electrochim. Acta 461, 142613 (2023).

    CAS  Google Scholar 

  50. Garg, S. et al. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. https://doi.org/10.1039/d2ee03725d (2023).

    Article  Google Scholar 

  51. Moss, A. B. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2023).

    CAS  Google Scholar 

  52. Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO(2)–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    CAS  ADS  PubMed  Google Scholar 

  53. Masciocchi, N., Castelli, F., Forster, P. M., Tafoya, M. M. & Cheetham, A. K. Synthesis and characterization of two polymorphic crystalline phases and an amorphous powder of nickel(II) bisimidazolate. Inorg. Chem. 42, 6147–6152 (2003).

    CAS  PubMed  Google Scholar 

  54. Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    CAS  Google Scholar 

  55. Daiyan, R. et al. Transforming active sites in nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy 78, 105213 (2020).

    CAS  Google Scholar 

  56. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. Reac. Chem. Eng. 5, 1768–1775 (2020).

    CAS  Google Scholar 

  57. Lees, E. W. et al. Linking gas diffusion electrode composition to CO2 reduction in a flow cell. J. Mater. Chem. A 8, 19493–19501 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement nos. 851441, SELECTCO2, and 101006701, ECOFUEL. This work was financially supported by the Initiative and Networking Fund of the Helmholtz Association (grant agreement no. KA2-HSC-12, ‘A Comprehensive Approach to Harnessing the Innovation Potential of Direct Air Capture and Storage for Reaching CO2-Neutrality’, DACStorE).

Author information

Authors and Affiliations

Authors

Contributions

S.B, W.J. and P.S. conceived and designed the project and wrote the paper. Q.F. and W.J. carried out the materials synthesis. S.B. and W.J performed the characterization and electrochemical evaluation. M.K performed the TEM and XPS characterizations. D.G. and A.T. performed the SEM characterization. S.O. performed the BET characterization. All authors read and commented on the paper.

Corresponding authors

Correspondence to Wen Ju or Peter Strasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Bingjun Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 CO2RR key parameters

Extended Data Fig. 1 Stability test and analysis of the NiNC cathode.

a) Stability test over 180 h at 100 mA cm-2 and b) Geis measurements of NiNC-IMI at 100 mA cm-2, shown as Nyquist plot. c) CCC analysis over a 180-h stability test.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Notes and Tables 1–5.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brückner, S., Feng, Q., Ju, W. et al. Design and diagnosis of high-performance CO2-to-CO electrolyzer cells. Nat Chem Eng 1, 229–239 (2024). https://doi.org/10.1038/s44286-024-00035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00035-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing