Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Durable CO2 conversion in the proton-exchange membrane system

A Publisher Correction to this article was published on 14 March 2024

This article has been updated

Abstract

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1,2,3,4,5,6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7,8,9,10,11,12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13,14,15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16,17,18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead–acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm−2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical characterization.
Fig. 2: Electrochemical measurements.
Fig. 3: In situ characterization.
Fig. 4: Theoretical investigation.

Similar content being viewed by others

Data availability

The datasets that support the findings of this study are presented in the text and Supplementary InformationSource data are provided with this paper.

Change history

References

  1. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  ADS  PubMed  Google Scholar 

  2. Wang, Z. et al. Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell. Angew. Chem. Int. Ed. Engl. 61, e202200552 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Hori, Y. et al. “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim. Acta 50, 5354–5369 (2005).

    Article  CAS  Google Scholar 

  4. Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zhu, P. & Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    Article  CAS  Google Scholar 

  6. Xue, W. et al. Operando reconstruction towards stable CuI nanodots with favorable facets for selective CO2 electroreduction to C2H4. Sci. China Chem. 66, 1834–1843 (2023).

    Article  CAS  Google Scholar 

  7. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  10. Xie, Y. et al. High carbon utilization in CO2 reduction to multicarbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

    Article  CAS  Google Scholar 

  11. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  12. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design. J. CO2 Util. 42, 101349 (2020).

  13. Yan, Z., Hitt, J. L., Zeng, Z., Hickner, M. A. & Mallouk, T. E. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. O’Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Article  Google Scholar 

  16. Oßkopp, M. et al. Producing formic acid at low pH values by electrochemical CO2 reduction. J. CO2 Util. 56, 101823 (2022).

  17. Li, J. & Kornienko, N. Electrocatalytic carbon dioxide reduction in acid. Chem. Catal. 2, 29–38 (2022).

    Article  CAS  Google Scholar 

  18. Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 143, 279–285 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Deng, P. et al. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. Engl. 59, 10807–10813 (2020).

    Article  CAS  Google Scholar 

  20. Gao, D. et al. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys. Chim. Sin. 37, 2009021 (2021).

    ADS  Google Scholar 

  21. Lopes, P. P. & Stamenkovic, V. R. Past, present, and future of lead–acid batteries. Science 369, 923–924 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  23. Wang, Z. et al. Advanced catalyst design and reactor configuration upgrade in electrochemical carbon dioxide conversion. Adv. Mater. https://doi.org/10.1002/adma.202303052 (2023).

  24. Endrodi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 6, 439–448 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. ACS Energy Lett. 7, 2884–2892 (2022).

    Article  CAS  Google Scholar 

  26. Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).

    Article  CAS  Google Scholar 

  28. Xiao, F. et al. Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 5, 503–512 (2022).

    Article  CAS  Google Scholar 

  29. Zhang, Z. et al. Conversion of reactive carbon solutions into CO at low voltage and high carbon efficiency. ACS Cent. Sci. 8, 749–755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  32. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  33. Shi, Y. et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11, 3415 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, C. H. & Kanan, M. W. Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal. 5, 465–469 (2014).

    Article  Google Scholar 

  35. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Z. et al. Revealing structural evolution of PbS nanocrystal catalysts in electrochemical CO2 reduction using in situ synchrotron radiation X-ray diffraction. J. Mater. Chem. A 7, 23775–23780 (2019).

    Article  CAS  Google Scholar 

  37. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).

    Article  CAS  Google Scholar 

  39. Verma, S., Kim, B., Jhong, H. R., Ma, S. & Kenis, P. J. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Ramdin, M. et al. Electroreduction of CO2/CO to C2 products: process modeling, downstream separation, system integration, and economic analysis. Ind. Eng. Chem. Res. 60, 17862–17880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sisler, J. et al. Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems. ACS Energy Lett. 6, 997–1002 (2021).

    Article  ADS  CAS  Google Scholar 

  42. Jing, X., Li, F. & Wang, Y. Assessing the economic potential of large-scale carbonate-formation-free CO2 electrolysis. Catal. Sci. Technol. 12, 2912–2919 (2022).

    Article  CAS  Google Scholar 

  43. Jin, J. et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617, 724–729 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  CAS  Google Scholar 

  48. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  49. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations*. Phys. Rev. B 13, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  50. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Science Foundation for Distinguished Young Scholars (no. 22325901), the National Key Research and Development Program of China (nos. 2021YFA1600800 and 2021YFA1501000), the National Natural Science Foundation of China (no.22075092), the Program for HUST Academic Frontier Youth Team (nos. 2018QYTD15 and 2019QYTD11), the Huazhong University of Science and Technology–Queen Mary University of London Strategic Partnership Research Funding (no. 2022-HUST-QMUL-SPRF-03) and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (no. B21003). We thank beamline BL01B (for finfrared spectroscopy and microspectroscopy) and BL12B X-ray magnetic circular dichroism (XMCD) at NSRL and beamline 1W1B (XAFS) at BSRF. We thank BL20U and BL14W1 at the Shanghai Synchrotron Radiation Facility for providing the beam time. The computational study is supported by Marsden Fund Council from Government funding (no. 21-UOA-237) and a Catalyst: Seeding General Grant (no. 22-UOA-031-CGS), managed by Royal Society Te Apārangi. Z.W. and R.L. acknowledge the use of New Zealand eScience Infrastructure high-performance computing facilities, consulting support and/or training services as part of this research. We acknowledge the support of WNLO of HUST and the Analytical and Testing Center of Huazhong University of Science and Technology for XRD, XPS, Raman, SEM, TEM, FTIR, inductively coupled plasma–mass spectrometry and NMR measurements. We also thank L. Zhuang at Wuhan University, J. L. Gong at Tianjin University, D. F. Gao at the Dalian Institute of Chemical Physics and J. J. Ge at the University of Science and Technology of China for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.Y.X. conceived and supervised the project. W.F. and B.Y.X. designed and carried out electrochemical experiments. R.L. carried out DFT calculations. Z.W. and B.Y.X. supervised and advised on DFT calculations. W.F., X.L., S.W., F.S., T.Y. and B.Y.X. performed and discussed soft X-ray absorption spectroscopy characterization. W.F., D.W., X.Y. and T.Y. assisted with in situ FTIR experiments. C.H. assisted with ultraviolet experiments. W.F., Y.L. and T.Z. helped with the in situ Raman test. W.G., F.M.L., C.X., Y.Y. and H.N. contributed to results discussion and data analysis. Y.Z. contributed to XPS result discussion. L.D. provided in situ XRD measurements. W.G., Y.M., C.Z., Y.P., G.W., X.G., B.Y. and B.T. commented on and revised the manuscript. W.F., R.L., T.Y., Z.W. and B.Y.X. wrote and revised the manuscript. All authors discussed the results and assisted with manuscript preparation. W.F., W.G. and R.L. contributed equally to this work.

Corresponding authors

Correspondence to Tao Yao, Ziyun Wang or Bao Yu Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Feng Jiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file includes techno-economic analysis (comprehensive TEA calculation procedures and outcomes), Supplementary Figs. 1–47 and Tables 1–7 (comparative analysis of CO2 electrolysis performance, TEA parameters, ion chromatography and DFT results).

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Guo, W., Lu, R. et al. Durable CO2 conversion in the proton-exchange membrane system. Nature 626, 86–91 (2024). https://doi.org/10.1038/s41586-023-06917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06917-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing