Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Motion artefact management for soft bioelectronics

Abstract

Soft bioelectronic devices can be interfaced with anatomically curved organs, such as the heart, brain and skin, to provide continuous analysis of physiological information. However, body movements and physiological activities may induce motion artefacts, which can adversely affect signal accuracy and stability. Importantly, motion artefact management is key to promoting the clinical translation of soft bioelectronics to ensure that soft bioelectronic devices can selectively detect target biological signals with high accuracy. In this Review, we discuss how body activities can affect the soft bioelectronic–tissue interface and result in motion artefact signals, including interface impedance instability motion artefacts, biopotential motion artefacts and mechanical motion artefacts. We then investigate different motion artefact management strategies, including materials engineering, device and circuit design, and algorithmic intervention, to reduce the contribution of motion artefacts to signal acquisition, processing and interpretation.

Key points

  • Soft bioelectronic systems for the monitoring of human health rely on a stable and conformal bioelectronic–tissue interface.

  • Motion artefacts can occur due to body movements and physiological activities, and can negatively affect signal detection and interpretation in bioelectronic measurements.

  • Motion artefact management is crucial to the clinical translation of soft bioelectronics to ensure measurement with high accuracy.

  • Materials usage, device design, bioelectronic–tissue adhesion, sensor and circuit designs, and algorithmic intervention are effective motion artefact management strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soft bioelectronic systems and bioelectronic–tissue interfaces.
Fig. 2: Motion artefacts in soft bioelectronic systems.
Fig. 3: Interface impedance instability motion artefact management.
Fig. 4: Biopotential and mechanical motion artefact management.

Similar content being viewed by others

References

  1. Williams, G. J. et al. Wearable technology and the cardiovascular system: the future of patient assessment. Lancet Digit. Health 5, e467–e476 (2023).

    Article  Google Scholar 

  2. Sunwoo, S.-H. et al. Soft bioelectronics for the management of cardiovascular diseases. Nat. Rev. Bioeng. 2, 8–24 (2024).

    Article  Google Scholar 

  3. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022). This article summarizes biochemical sensor platforms that can be integrated with human skin for wearable health-care monitoring.

    Article  Google Scholar 

  4. Cho, K. W. et al. Soft bioelectronics based on nanomaterials. Chem. Rev. 122, 5068–5143 (2022).

    Article  Google Scholar 

  5. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  Google Scholar 

  6. Haque, A., Milstein, A. & Fei-Fei, L. Illuminating the dark spaces of healthcare with ambient intelligence. Nature 585, 193–202 (2020).

    Article  Google Scholar 

  7. Chen, G. et al. Electronic textiles for wearable point-of-care systems. Chem. Rev. 122, 3259–3291 (2022).

    Article  Google Scholar 

  8. Libanori, A., Chen, G., Zhao, X., Zhou, Y. & Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022).

    Article  Google Scholar 

  9. Meng, K. et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2, 896–907 (2020).

    Article  Google Scholar 

  10. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  Google Scholar 

  11. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  Google Scholar 

  12. Gao, Q. et al. Highly stretchable sensors for wearable biomedical applications. J. Mater. Sci. 54, 5187–5223 (2019).

    Article  Google Scholar 

  13. Wang, C., Yokota, T. & Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146 (2021).

    Article  Google Scholar 

  14. Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).

    Article  Google Scholar 

  15. Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).

    Article  Google Scholar 

  16. Li, Y. et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 14, 4488 (2023).

    Article  Google Scholar 

  17. Liang, H., Lin, Z. & Yin, F. Removal of ECG contamination from diaphragmatic EMG by nonlinear filtering. Nonlinear Anal. Theory Methods Appl. 63, 745–753 (2005).

    Article  MathSciNet  Google Scholar 

  18. Wang, G., Teng, C., Li, K., Zhang, Z. & Yan, X. The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J. Biomed. Health Inform. 20, 1301–1308 (2016).

    Article  Google Scholar 

  19. Lai, C. Q. et al. Artifacts and noise removal for electroencephalogram (EEG): a literature review. In 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE) 326–332 (IEEE, 2018).

  20. Webster, J. G. Reducing motion artifacts and interference in biopotential recording. IEEE Trans. Biomed. Eng. 31, 823–826 (1984).

    Article  Google Scholar 

  21. Rodeheaver, N. et al. Strain‐isolating materials and interfacial physics for soft wearable bioelectronics and wireless, motion artifact-controlled health monitoring. Adv. Funct. Mater. 31, 2104070 (2021).

    Article  Google Scholar 

  22. Nan, K. et al. Mucosa-interfacing electronics. Nat. Rev. Mater. 7, 908–925 (2022).

    Article  Google Scholar 

  23. Choi, H. et al. Adhesive bioelectronics for sutureless epicardial interfacing. Nat. Electron. 6, 779–789 (2023).

    Article  Google Scholar 

  24. Boehler, C., Carli, S., Fadiga, L., Stieglitz, T. & Asplund, M. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 15, 3557–3578 (2020).

    Article  Google Scholar 

  25. Jiang, Y. & Tian, B. Inorganic semiconductor biointerfaces. Nat. Rev. Mater. 3, 473–490 (2018). This article discusses fundamental semiconductor physics and operation principles with a focus on biointerface establishment under physiological conditions.

    Article  Google Scholar 

  26. Driscoll, N. et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci. Transl. Med. 13, eabf8629 (2021).

    Article  Google Scholar 

  27. Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795–802 (2023).

    Article  Google Scholar 

  28. Kim, J., Ghaffari, R. & Kim, D.-H. The quest for miniaturized soft bioelectronic devices. Nat. Biomed. Eng. 1, 0049 (2017).

    Article  Google Scholar 

  29. Xiao, X., Zhou, Y., Yin, J., Zhao, X. & Chen, J. In-ear electrophysichochemical sensing. Nat. Biomed. Eng. 7, 1207–1209 (2023).

    Article  Google Scholar 

  30. Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain-computer interfaces. Nat. Electron. 6, 109–118 (2023).

    Article  Google Scholar 

  31. Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14, 156–160 (2019).

    Article  Google Scholar 

  32. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Article  Google Scholar 

  33. Liu, Z. et al. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater. 29, 2 (2017).

    Google Scholar 

  34. Qi, D. et al. Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. Adv. Mater. 29, 40 (2017).

    Article  Google Scholar 

  35. Zhao, Y. et al. Soft strain-insensitive bioelectronics featuring brittle materials. Science 378, 1222–1227 (2022).

    Article  Google Scholar 

  36. Gablech, I. & Głowacki, E. D. State‐of-the-art electronic materials for thin films in bioelectronics. Adv. Electron. Mater. 9, 2300258 (2023).

    Article  Google Scholar 

  37. He, H. et al. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat. Commun. 14, 759 (2023).

    Article  Google Scholar 

  38. Wang, Y. et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51, 3759–3793 (2022).

    Article  Google Scholar 

  39. Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article  Google Scholar 

  40. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2018).

    Article  Google Scholar 

  41. Alizadeh-Meghrazi, M. et al. Evaluation of dry textile electrodes for long-term electrocardiographic monitoring. Biomed. Eng. Online 20, 68 (2021).

    Article  Google Scholar 

  42. Buxi, D. et al. Correlation between electrode-tissue impedance and motion artifact in biopotential recordings. IEEE Sens. J. 12, 3373–3383 (2012).

    Article  Google Scholar 

  43. Murphy, B. B. et al. Time evolution of the skin–electrode interface impedance under different skin treatments. Sensors 21, 5210 (2021).

    Article  Google Scholar 

  44. Neuman, M. In: Medical Instrumentation: Application and Design 4th edn (ed Webster, J. G.) 189–240 (Wiley, 1998).

  45. Reilly, R. B. & Lee, T. C. Electrograms (ECG, EEG, EMG, EOG). Technol. Health Care 18, 443–458 (2010).

    Article  Google Scholar 

  46. Teplan, M. Fundamental of EEG measurement. Meas. Sci. Rev. 2, 1–11 (2002).

    Google Scholar 

  47. Elul, R. The genesis of the EEG. Int. Rev. Neurobiol. 15, 227–272 (1972).

    Article  Google Scholar 

  48. Woestenburg, J. C., Verbaten, M. N. & Slangen, J. L. The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain. Biol. Psychol. 16, 127–147 (1983).

    Article  Google Scholar 

  49. Kher, R. Signal processing techniques for removing noise from ECG signals. J. Biomed. Eng. Res. 3, 212573348 (2019).

    Google Scholar 

  50. Mithun, P., Pandey, P. C., Sebastian, T., Mishra, P. & Pandey, V. K. A wavelet based technique for suppression of EMG noise and motion artifact in ambulatory ECG. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 7087–7090 (2011).

    Google Scholar 

  51. Marouf, M., Saranovac, L. & Vukomanovic, G. Algorithm for EMG noise level approximation in ECG signals. Biomed. Signal Process. Control 34, 158–165 (2017).

    Article  Google Scholar 

  52. Meng, K. et al. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022).

    Article  Google Scholar 

  53. Su, Y. et al. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33, 2101262 (2021).

    Article  Google Scholar 

  54. Zhang, S. et al. Leveraging triboelectric nanogenerators for bioengineering. Matter 4, 845–887 (2021).

    Article  Google Scholar 

  55. Jeong, H. et al. Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Sci. Adv. 7, eabg3092 (2021). This article reports a circuit compensation design to accurately measure various physiological and movement indicators while mitigating motion artefacts during human activities.

    Article  Google Scholar 

  56. Kireev, D. et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022).

    Article  Google Scholar 

  57. Sel, K., Osman, D. & Jafari, R. Non-invasive cardiac and respiratory activity assessment from various human body locations using bioimpedance. IEEE Open J. Eng. Med. Biol. 2, 210–217 (2021).

    Article  Google Scholar 

  58. Kang, J. et al. Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors. Nat. Nanotechnol. 17, 1265–1271 (2022).

    Article  Google Scholar 

  59. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  Google Scholar 

  60. Afanasenkau, D. et al. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat. Biomed. Eng. 4, 1010–1022 (2020).

    Article  Google Scholar 

  61. Bootsma, K. et al. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. J. Mech. Behav. Biomed. Mater. 70, 84–94 (2017).

    Article  Google Scholar 

  62. Li, G. et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34, e2200261 (2022).

    Article  Google Scholar 

  63. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022). This article describes an adaptable and breathable electronic membrane with consistent bioelectronic–tissue adhesion for interface impedance instability motion artefact management.

    Article  Google Scholar 

  64. Song, K.-I. et al. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat. Commun. 11, 4195 (2020).

    Article  Google Scholar 

  65. Seo, H. et al. Durable and fatigue-resistant soft peripheral neuroprosthetics for in vivo bidirectional signaling. Adv. Mater. 33, e2007346 (2021).

    Article  Google Scholar 

  66. Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).

    Article  Google Scholar 

  67. Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article  Google Scholar 

  68. Koo, J. H., Song, J.-K., Kim, D.-H. & Son, D. Soft implantable bioelectronics. ACS Mater. Lett. 3, 1528–1540 (2021).

    Article  Google Scholar 

  69. Yan, Z. et al. Thermal release transfer printing for stretchable conformal bioelectronics. Adv. Sci. 4, 1700251 (2017).

    Article  Google Scholar 

  70. Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  Google Scholar 

  71. Yu, Y., Sanchez, D. & Lu, N. Work of adhesion/separation between soft elastomers of different mixing ratios. J. Mater. Res. 30, 2702–2712 (2015).

    Article  Google Scholar 

  72. Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020).

    Article  Google Scholar 

  73. Kang, J. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, e1706846 (2018).

    Article  Google Scholar 

  74. Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).

    Article  MathSciNet  Google Scholar 

  75. Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

    Article  Google Scholar 

  76. Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).

    Article  Google Scholar 

  77. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  Google Scholar 

  78. Li, Y. et al. Ultrasensitive and ultrastretchable electrically self-healing conductors. Proc. Natl Acad. Sci. USA 120, e2300953120 (2023).

    Article  Google Scholar 

  79. Ohm, Y. et al. An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics. Nat. Electron. 4, 185–192 (2021).

    Article  Google Scholar 

  80. Xu, Y. et al. Porous liquid metal-elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. Sci. Adv. 9, eadf0575 (2023).

    Article  Google Scholar 

  81. Zheng, L. et al. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 7, eabg4041 (2021).

    Article  Google Scholar 

  82. Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article  Google Scholar 

  83. Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    Article  Google Scholar 

  84. Zhang, Y. et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 5, eaaw1066 (2019).

    Article  Google Scholar 

  85. Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Article  Google Scholar 

  86. Peñuela, L. et al. Atomic force microscopy for biomechanical and structural analysis of human dermis: a complementary tool for medical diagnosis and therapy monitoring. Exp. Dermatol. 27, 150–155 (2018).

    Article  Google Scholar 

  87. Choi, C., Lee, Y., Cho, K. W., Koo, J. H. & Kim, D.-H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52, 73–81 (2019).

    Article  Google Scholar 

  88. Lee, Y. K. et al. Chemical sensing systems that utilize soft electronics on thin elastomeric substrates with open cellular designs. Adv. Funct. Mater. 27, 1605476 (2017).

    Article  Google Scholar 

  89. Song, E. et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat. Biomed. Eng. 5, 759–771 (2021).

    Article  Google Scholar 

  90. Jeong, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013). This article reports soft bioelectronics with a stretchable serpentine structure and thickness reduction engineering strategies for interface impedance instability motion artefact management.

    Article  Google Scholar 

  91. Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010).

    Article  Google Scholar 

  92. Lee, S. et al. A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel. Nat. Commun. 5, 5898 (2014).

    Article  Google Scholar 

  93. Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA 105, 18675–18680 (2008).

    Article  Google Scholar 

  94. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  Google Scholar 

  95. Silva, C. A. et al. Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv. Funct. Mater. 30, 2002041 (2020).

    Article  Google Scholar 

  96. Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Article  Google Scholar 

  97. Zhang, Y., Huang, Y. & Rogers, J. A. Mechanics of stretchable batteries and supercapacitors. Curr. Opin. Solid State Mater. Sci. 19, 190–199 (2015).

    Article  Google Scholar 

  98. Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  Google Scholar 

  99. Ma, Y. et al. Design of strain-limiting substrate materials for stretchable and flexible electronics. Adv. Funct. Mater. 26, 5345–5351 (2016).

    Article  Google Scholar 

  100. Wang, M. et al. Ultrastretchable MXene microsupercapacitors. Small 19, e2300386 (2023).

    Article  Google Scholar 

  101. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  102. Yeo, W. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013).

    Article  Google Scholar 

  103. Zhang, Y. et al. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827 (2013).

    Article  Google Scholar 

  104. Xu, S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).

    Article  Google Scholar 

  105. Norton, J. J. S. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl Acad. Sci. USA 112, 3920–3925 (2015).

    Article  Google Scholar 

  106. Xu, L. et al. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27, 1731–1737 (2015).

    Article  Google Scholar 

  107. Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    Article  Google Scholar 

  108. Meng, K. et al. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv. Mater. 34, 2202478 (2022). This article discusses a kirigami-inspired anisotropic response sensor design strategy for mechanical motion artefact management.

    Article  Google Scholar 

  109. Brooks, A. K., Chakravarty, S., Ali, M. & Yadavalli, V. K. Kirigami‐inspired biodesign for applications in healthcare. Adv. Mater. 34, e2109550 (2022).

    Article  Google Scholar 

  110. Luo, Y. et al. Learning human-environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021).

    Article  Google Scholar 

  111. Chen, G., Fang, Y., Zhao, X., Tat, T. & Chen, J. Textiles for learning tactile interactions. Nat. Electron. 4, 175–176 (2021).

    Article  Google Scholar 

  112. Chen, G., Li, Y., Bick, M. & Chen, J. Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020).

    Article  Google Scholar 

  113. Fang, Y., Chen, G., Bick, M. & Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 50, 9357–9374 (2021).

    Article  Google Scholar 

  114. Yin, J. et al. Smart textiles for self-powered biomonitoring. Med-X 1, 3 (2023).

    Article  Google Scholar 

  115. Creton, C. Pressure-sensitive adhesives: an introductory course. MRS Bull. 28, 434–439 (2003).

    Article  Google Scholar 

  116. Chung, J. Y. & Chaudhury, M. K. Soft and hard adhesion. J. Adhes. 81, 1119–1145 (2005).

    Article  Google Scholar 

  117. Cong, Y. & Fu, J. Hydrogel-tissue interface interactions for implantable flexible bioelectronics. Langmuir 38, 11503–11513 (2022).

    Article  Google Scholar 

  118. Bai, S. et al. Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 11, 5807–5813 (2015).

    Article  Google Scholar 

  119. Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).

    Article  Google Scholar 

  120. Long, T., Li, Y., Fang, X. & Sun, J. Salt‐mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity. Adv. Funct. Mater. 28, 1804416 (2018).

    Article  Google Scholar 

  121. Roy, C. K. et al. Self‐adjustable adhesion of polyampholyte hydrogels. Adv. Mater. 27, 7344–7348 (2015).

    Article  Google Scholar 

  122. Pan, L. et al. A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv. Mater. 32, 2003723 (2020).

    Article  Google Scholar 

  123. Hou, Y. et al. Tuning water-resistant networks in mussel-inspired hydrogels for robust wet tissue and bioelectronic adhesion. ACS Nano 17, 2745–2760 (2023).

    Article  Google Scholar 

  124. Kim, S. et al. Injection-on-skin granular adhesive for interactive human–machine interface. Adv. Mater. 35, e2307070 (2023).

    Article  Google Scholar 

  125. Saiz-Poseu, J., Mancebo-Aracil, J., Nador, F., Busqué, F. & Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. Engl. 58, 696–714 (2019).

    Article  Google Scholar 

  126. Han, L. et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13, 1601916 (2017).

    Article  Google Scholar 

  127. Liu, J. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl Acad. Sci. USA 117, 14769–14778 (2020).

    Article  Google Scholar 

  128. Yang, S. et al. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat. Commun. 14, 6494 (2023).

    Article  Google Scholar 

  129. Cadirov, N., Booth, J. A., Turner, K. L. & Israelachvili, J. N. Influence of humidity on grip and release adhesion mechanisms for gecko-inspired microfibrillar surfaces. ACS Appl. Mater. Interfaces 9, 14497–14505 (2017).

    Article  Google Scholar 

  130. Ma, X. et al. Capillary-force-assisted clean-stamp transfer of two-dimensional materials. Nano Lett. 17, 6961–6967 (2017).

    Article  Google Scholar 

  131. Cheng, S. & Robbins, M. O. Nanocapillary adhesion between parallel plates. Langmuir 32, 7788–7795 (2016).

    Article  Google Scholar 

  132. Fan, J., Coninck, J. D., Wu, H. & Wang, F. Microscopic origin of capillary force balance at contact line. Phys. Rev. Lett. 124, 125502 (2020).

    Article  Google Scholar 

  133. Liu, Y. et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17, 1090–1096 (2017).

    Article  Google Scholar 

  134. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  Google Scholar 

  135. Pokrajac, L. et al. Nanotechnology for a sustainable future: addressing global challenges with the international network4sustainable nanotechnology. ACS Nano 15, 18608–18623 (2021).

    Article  Google Scholar 

  136. Bae, W. G. et al. Enhanced skin adhesive patch with modulus-tunable composite micropillars. Adv. Healthc. Mater. 2, 109–113 (2013).

    Article  Google Scholar 

  137. Kwak, M. K., Jeong, H. & Suh, K. Y. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv. Mater. 23, 3949–3953 (2011).

    Article  Google Scholar 

  138. Kim, T., Park, J., Sohn, J., Cho, D. & Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10, 4770–4778 (2016).

    Article  Google Scholar 

  139. Baik, S. et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546, 396–400 (2017).

    Article  Google Scholar 

  140. Baik, S., Kim, J., Lee, H. J., Lee, T. H. & Pang, C. Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin. Adv. Sci. 5, 1800100 (2018).

    Article  Google Scholar 

  141. Choi, M. K. et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 5, 80–87 (2016).

    Article  Google Scholar 

  142. Chun, S. et al. Conductive and stretchable adhesive electronics with miniaturized octopus-like suckers against dry/wet skin for biosignal monitoring. Adv. Funct. Mater. 28, 1805224 (2018).

    Article  Google Scholar 

  143. Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 8, 344ra86 (2016).

    Article  Google Scholar 

  144. Sim, K. et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 5, eaav9653 (2019).

    Article  Google Scholar 

  145. Yang, Q., Hu, Z. & Rogers, J. A. Functional hydrogel interface materials for advanced bioelectronic devices. Acc. Mater. Res. 2, 1010–1023 (2021).

    Article  Google Scholar 

  146. Kim, J., Oh, J., Park, Y., Kim, J. J. & Jeong, U. Soft conductive interfacing for bioelectrical uses: adhesion mechanisms and structural approaches. Macromolecules 56, 4431–4446 (2023).

    Article  Google Scholar 

  147. Tian, G. et al. A nonswelling hydrogel with regenerable high wet tissue adhesion for bioelectronics. Adv. Mater. 35, 2212302 (2023).

    Article  Google Scholar 

  148. Chen, X., Yuk, H., Wu, J., Nabzdyk, C. S. & Zhao, X. Instant tough bioadhesive with triggerable benign detachment. Proc. Natl Acad. Sci. USA 117, 15497–15503 (2020).

    Article  Google Scholar 

  149. Zhan, Y., Halliday, D., Jiang, P., Liu, X. & Feng, J. Detecting time-dependent coherence between non-stationary electrophysiological signals-a combined statistical and time-frequency approach. J. Neurosci. Methods 156, 322–332 (2006).

    Article  Google Scholar 

  150. Williams, W. J., Zaveri, H. P. & Sackellares, J. C. Time-frequency analysis of electrophysiology signals in epilepsy. IEEE Eng. Med. Biol. Mag. 14, 133–143 (1995).

    Article  Google Scholar 

  151. Murthy, V. K., Grove, T. M., Harvey, G. A. & Haywood, L. J. Clinical usefulness of ECG frequency spectrum analysis. Proc. Annu. Symp. Comput. Appl. Med. Care 610–612 (1978).

  152. Kostyunina, M. B. & Kulikov, M. A. Frequency characteristics of EEG spectra in the emotions. Neurosci. Behav. Physiol. 26, 340–343 (1996).

    Article  Google Scholar 

  153. Al-Fahoum, A. S. & Al-Fraihat, A. A. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci. 2014, 730218 (2014).

    Article  Google Scholar 

  154. Komi, P. V. & Tesch, P. EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man. Eur. J. Appl. Physiol. Occup. Physiol. 42, 41–50 (1979).

    Article  Google Scholar 

  155. Grosse, P., Cassidy, M. J. & Brown, P. EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin. Neurophysiol. 113, 1523–1531 (2002).

    Article  Google Scholar 

  156. Wang, Y. et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. 6, eabd0996 (2020). This article presents a signal compensation circuit using the differential method for biopotential and mechanical motion artefact management.

    Article  Google Scholar 

  157. Sugiyama, M. et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2, 351–360 (2019).

    Article  Google Scholar 

  158. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    Article  Google Scholar 

  159. van Drongelen, W. Signal Processing for Neuroscientists 169–175 (Elsevier Science, 2018).

  160. Lin, C.-F. & Zhu, J.-D. Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications. Proc. Inst. Mech. Eng. H 226, 208–216 (2012).

    Article  Google Scholar 

  161. Challis, R. E. & Kitney, R. I. Biomedical signal processing, part 2: the frequency transforms and their inter-relationships. Med. Biol. Eng. Comput. 28, 509–524 (1990).

    Article  Google Scholar 

  162. Gómez-Echavarría, A., Ugarte, J. P. & Tobón, C. The fractional Fourier transform as a biomedical signal and image processing tool: a review. Biocybern. Biomed. Eng. 40, 1081–1093 (2020).

    Article  Google Scholar 

  163. Challis, R. E. & Kitney, R. I. The design of digital filters for biomedical signal processing part 3: the design of Butterworth and Chebychev filters. J. Biomed. Eng. 5, 91–102 (1983).

    Article  Google Scholar 

  164. Sadasivan, P. K. & Dutt, D. N. Use of finite wordlength FIR digital filter structures with improved magnitude and phase characteristics for reduction of muscle noise in EEG signals. Med. Biol. Eng. Comput. 33, 306–312 (1995).

    Article  Google Scholar 

  165. Correa, A. G., Laciar, E., Patiño, H. D. & Valentinuzzi, M. E. Artifact removal from EEG signals using adaptive filters in cascade. J. Phys. Conf. Ser. 90, 012081 (2007).

    Article  Google Scholar 

  166. Krittanawong, C. et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat. Rev. Cardiol. 18, 75–91 (2021).

    Article  Google Scholar 

  167. Li, Y. et al. Learning hand kinematics for Parkinson’s disease assessment using a multimodal sensor glove. Adv. Sci. 10, 2206982 (2023).

    Article  Google Scholar 

  168. Xu, J. et al. Deep learning assisted ternary electrification layered triboelectric membrane sensor for self-powered home security. Nano Energy 113, 108524 (2023).

    Article  Google Scholar 

  169. Dillen, A. et al. Deep learning for biosignal control: insights from basic to real-time methods with recommendations. J. Neural Eng. 19, 011003 (2022).

    Article  Google Scholar 

  170. Sun, W., Su, Y., Wu, X. & Wu, X. A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals. Neurocomputing 404, 108–121 (2020).

    Article  Google Scholar 

  171. Xiong, D., Zhang, D., Zhao, X. & Zhao, Y. Deep learning for EMG-based human-machine interaction: a review. IEEE/CAA J. Autom. Sin. 8, 512–533 (2021).

    Article  Google Scholar 

  172. Luca, C. J. D., Gilmore, L. D., Kuznetsov, M. & Roy, S. H. Filtering the surface EMG signal: movement artifact and baseline noise contamination. J. Biomech. 43, 1573–1579 (2010). This article reports on a signal processing strategy based on a Butterworth filtering algorithm in electrophysiological monitoring for mechanical motion artefact management.

    Article  Google Scholar 

  173. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  Google Scholar 

  174. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2018).

    Article  Google Scholar 

  175. Flynn, C. D. et al. Biomolecular sensors for advanced physiological monitoring. Nat. Rev. Bioeng. 1, 560–575 (2023).

    Article  Google Scholar 

  176. Chen, S. et al. Wearable flexible microfluidic sensing technologies. Nat. Rev. Bioeng. 1, 950–971 (2023).

    Article  Google Scholar 

  177. Che, Z., Wan, X. & Xu, J. et al. Speaking without vocal folds using a machine-learning-assisted wearable sensing-actuation system. Nat. Commun. 15, 1873 (2024).

    Article  Google Scholar 

  178. Zhou, Y. et al. A multimodal magnetoelastic artificial skin for underwater haptic sensing. Sci. Adv. 10, eadj8567 (2024).

    Article  Google Scholar 

  179. Fang, Y. et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33, 2104178 (2021). This article presents a machine learning-assisted signal features extraction strategy for biopotential and mechanical motion artefact management.

    Article  Google Scholar 

  180. Yi, Z. et al. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv. Mater. 34, 2110291 (2022).

    Article  Google Scholar 

  181. Rowland, E. M., Bailey, E. L. & Weinberg, P. D. Estimating arterial cyclic strain from the spacing of endothelial nuclei. Exp. Mech. 61, 171–190 (2021).

    Article  Google Scholar 

  182. Edin, B. B. & Johansson, N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J. Physiol. 487, 243–251 (1995).

    Article  Google Scholar 

  183. Park, B. et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 376, 624–629 (2022).

    Article  Google Scholar 

  184. Jeong, C. et al. Motion artifact-resilient zone for implantable sensors. Adv. Funct. Mater. 32, 2206461 (2022).

    Article  Google Scholar 

  185. Rodeheaver, N., Kim, H., Herbert, R., Seo, H. & Yeo, W.-H. Breathable, wireless, thin-film wearable biopatch using noise-reduction mechanisms. ACS Appl. Electron. Mater. 4, 503–512 (2022).

    Article  Google Scholar 

  186. Zhao, Y. et al. A wearable freestanding electrochemical sensing system. Sci. Adv. 6, eaaz0007 (2020).

    Article  Google Scholar 

  187. Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    Article  Google Scholar 

  188. Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).

    Article  Google Scholar 

  189. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article  Google Scholar 

  190. Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article  Google Scholar 

  191. Molina-Lopez, F. et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019).

    Article  Google Scholar 

  192. Shim, H. et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 5, 660–671 (2022).

    Article  Google Scholar 

  193. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  Google Scholar 

  194. Liu, K., Ouyang, B., Guo, X., Guo, Y. & Liu, Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex. Electron. 6, 1 (2022).

    Article  Google Scholar 

  195. Uemura, T. & Sekitani, T. Ultraflexible Biosignal Amplifier Based on Organic Thin-film Transistors. 2019 Compound Semiconductor Week (CSW). (IEEE, 2019).

  196. Krishnan, S. & Athavale, Y. Trends in biomedical signal feature extraction. Biomed. Signal Process. Control 43, 41–63 (2018).

    Article  Google Scholar 

  197. Lee, K. et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 4, 148–158 (2020).

    Article  Google Scholar 

  198. Ni, X. et al. Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients. Proc. Natl Acad. Sci. USA 118, e2026610118 (2021).

    Article  Google Scholar 

  199. Franklin, D. et al. Synchronized wearables for the detection of haemodynamic states via electrocardiography and multispectral photoplethysmography. Nat. Biomed. Eng. 7, 1229–1241 (2023).

    Article  Google Scholar 

  200. Liu, J. et al. PCA-based multi-wavelength photoplethysmography algorithm for cuffless blood pressure measurement on elderly subjects. IEEE J. Biomed. Health Inform. 25, 663–673 (2020).

    Article  Google Scholar 

  201. Shen, C. P. et al. Convolution neural network algorithm for shockable arrhythmia classification within a digitally connected automated external defibrillator. J. Am. Heart Assoc. 12, e026974 (2023).

    Article  Google Scholar 

  202. Li, S., Lu, D., Pet, M., Rogers, J. A. & Huang, Y. An analytical model for sensing microvascular blood flow in flaps and organ grafts. J. Mech. Phys. Solids 170, 105119 (2023).

    Article  Google Scholar 

  203. Webb, R. C. et al. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci. Adv. 1, e1500701 (2015).

    Article  Google Scholar 

  204. Lee, S. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472–478 (2016).

    Article  Google Scholar 

  205. Song, J.-K. et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 17, 849–856 (2022).

    Article  Google Scholar 

  206. Kim, S. H. et al. A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 33, e2104690 (2021).

    Article  Google Scholar 

  207. Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article  Google Scholar 

  208. He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article  Google Scholar 

  209. Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).

    Article  Google Scholar 

  210. Jin, S. et al. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation. Nature 623, 58–65 (2023).

    Article  Google Scholar 

  211. Luan, L. et al. Recent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalability. Neuron 108, 302–321 (2020).

    Article  Google Scholar 

  212. Harrison, R. R. & Charles, C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuits 38, 958 (2003).

    Article  Google Scholar 

  213. Ershad, F. et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11, 3823 (2020).

    Article  Google Scholar 

  214. Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).

    Article  Google Scholar 

  215. Liu, S. et al. Conformability of flexible sheets on spherical surfaces. Sci. Adv. 9, eadf2709 (2023).

    Article  Google Scholar 

  216. Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    Article  Google Scholar 

  217. Khan, Y. et al. A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32, e1905279 (2020).

    Article  Google Scholar 

  218. Xu, Y. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    Article  Google Scholar 

  219. Balakrishnan, G., Song, J., Mou, C. & Bettinger, C. J. Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv. Mater. 34, 2106787 (2022).

    Article  Google Scholar 

  220. Han, M. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019).

    Article  Google Scholar 

  221. Zhou, Y. et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 1, 511–518 (2019).

    Article  Google Scholar 

  222. Luo, Y. et al. Devising materials manufacturing toward lab-to-fab translation of flexible electronics. Adv. Mater. 32, 2001903 (2020).

    Article  Google Scholar 

  223. Shi, H. H. et al. Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023).

    Article  Google Scholar 

  224. Kiran, D. R. In: Total Quality Management: Key Concepts and Case Studies 391–404 (Elsevier Science, 2017).

  225. Zheng, Y. et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat. Nanotechnol. 18, 1175–1184 (2023).

    Article  Google Scholar 

  226. Bierman, A. S. & Tinetti, M. E. Precision medicine to precision care: managing multimorbidity. Lancet 388, 2721–2723 (2016).

    Article  Google Scholar 

  227. Zhou, Z. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020).

    Article  Google Scholar 

  228. Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    Article  Google Scholar 

  229. Hou, B. et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat. Electron. 5, 682–693 (2022).

    Article  Google Scholar 

  230. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article  Google Scholar 

  231. Bai, H. et al. Stretchable distributed fiber-optic sensors. Science 370, 848–852 (2020).

    Article  Google Scholar 

  232. Kerr, E. A. & Hayward, R. A. Patient-centered performance management: enhancing value for patients and health care systems. JAMA 310, 137–138 (2013).

    Article  Google Scholar 

  233. Rose, N. Personalized medicine: promises, problems and perils of a new paradigm for healthcare. Procedia Soc. Behav. Sci. 77, 341–352 (2013).

    Article  Google Scholar 

  234. Li, Z., Tian, X., Qiu, C.-W. & Ho, J. S. Metasurfaces for bioelectronics and healthcare. Nat. Electron. 4, 382–391 (2021).

    Article  Google Scholar 

  235. Schwalbe, N. & Wahl, B. Artificial intelligence and the future of global health. Lancet 395, 1579–1586 (2020).

    Article  Google Scholar 

  236. Kim, J. et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat. Rev. Bioeng. 1, 631–647 (2023).

    Article  Google Scholar 

  237. Xu, S. et al. Wireless skin sensors for physiological monitoring of infants in low-income and middle-income countries. Lancet Digit. Health 3, e266–e273 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Henry Samueli School of Engineering & Applied Science and the Department of Bioengineering at the University of California, Los Angeles, for their startup support. J.C. acknowledges the Vernroy Makoto Watanabe Excellence in Research Award at the UCLA Samueli School of Engineering, the Office of Naval Research Young Investigator Award (award ID: N00014-24-1-2065), NIH grant (award ID: R01 CA287326), the American Heart Association Innovative Project Award (award ID: 23IPA1054908), the American Heart Association Transformational Project Award (award ID: 23TPA1141360), the American Heart Association’s Second Century Early Faculty Independence Award (award ID: 23SCEFIA1157587), the Brain & Behavior Research Foundation Young Investigator Grant (grant number: 30944), and the NIH National Center for Advancing Translational Science UCLA CTSI (grant number: KL2TR001882).

Author information

Authors and Affiliations

Authors

Contributions

J.C. guided the project. J.C. wrote, edited and reviewed the article. J.Y. and S.W. contributed equally to the preparation of this manuscript. T.T. made technical comments on the article. All authors have seen the paper, agree to its content and approve submission.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Donghee Son and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Wang, S., Tat, T. et al. Motion artefact management for soft bioelectronics. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00175-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00175-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing