Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluid protein condensates for bio-inspired applications

Abstract

Since the discovery of tropoelastin liquid–liquid phase separation in the 1950s, it has been recognized that fluid protein condensates, including coacervates and liquid crystals, are involved in the biofabrication of functional materials in numerous organisms. Prominent examples include elastin, spider silk, the mussel byssus and various biomineralized tissues as well as less studied systems such as velvet worm slime, sandcastle worm cement and the squid beak; similar mechanisms might lead to amyloid formation in neurodegenerative diseases. Engineers have exploited these fundamental insights to produce synthetic condensates for various biomedical applications. In this Review, we highlight biological systems in which protein condensates are involved in the production of biopolymeric and biocomposite materials (and possible implications of disruption of these structures in pathologies), and we discuss examples where extracted biological concepts have inspired translational applications. We emphasize the common strategies observed between different biological systems for the use of condensates in the assembly of various fibres, adhesives and composites. Finally, we discuss the applications of bio-inspired condensates in drug delivery, biomedical adhesives, tissue engineering and bioengineered composites.

Key points

  • Biocondensates, also called coacervates, form by liquid–liquid phase separation or liquid–liquid crystalline phase separation depending on the rigidity of the biomacromolecules involved.

  • Protein condensates, including coacervates and liquid crystals, are crucial for the assembly of biological fibres, including elastic fibres, amyloid fibrils, spider silk and the mussel byssus core, with extractable concepts for bio-inspired materials.

  • Prominent biological glues from mussels and sandcastle worms leverage characteristic features of protein condensates to achieve remarkable wet adhesion in salty marine environments, providing inspiration for synthetic adhesives.

  • Fluid condensate phases are precursors in the assembly of numerous tough biological composite materials, including squid beaks, hard, flexible coatings produced by mussels and various mineralized tissues.

  • Biocondensates are useful as transient phases during the assembly of biological materials owing to their biophysical characteristics, namely liquid-like properties enabling flow, as well as stimuli-responsive protein precursors and triggered fluid-to-solid transition.

  • Bio-inspired condensates have demonstrated promising potential for biomedical applications, including as safe drug-delivery systems, bio-adhesives for soft and hard tissue repair and scaffolds for tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties of phase separation processes.
Fig. 2: Formation of fibres from biomolecular fluid protein condensates.
Fig. 3: Formation of adhesives from biomolecular fluid protein condensates.
Fig. 4: Formation of biocomposites from biomolecular fluid protein condensates.
Fig. 5: Bio-inspired applications of biocondensates.

Similar content being viewed by others

References

  1. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  2. Beijerinck, M. W. Ueber Emulsionsbildung bei der Vermischung wässeriger Lösungen gewisser gelatinierender Kolloide [German]. Z. Chem. Ind. Kolloide 7, 16–20 (1910).

    Article  Google Scholar 

  3. Adair, G. S., Davis, H. F. & Partridge, S. M. A soluble protein derived from elastin. Nature 167, 605 (1951).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

  5. Bracha, D., Walls, M. T. & Brangwynne, C. P. Probing and engineering liquid-phase organelles. Nat. Biotechnol. 37, 1435–1445 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Phase transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Peran, I. & Mittag, T. Molecular structure in biomolecular condensates. Curr. Opin. Struct. Biol. 60, 17–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Vrhovski, B. & Weiss, A. S. Biochemistry of tropoelastin. Eur. J. Biochem. 258, 1–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yeo, G. C., Keeley, F. W. & Weiss, A. S. Coacervation of tropoelastin. Adv. Colloid Interface Sci. 167, 94–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Varanko, A. K., Su, J. C. & Chilkoti, A. Elastin-like polypeptides for biomedical applications. Annu. Rev. Biomed. Eng. 22, 343–369 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Dzuricky, M., Roberts, S. & Chilkoti, A. Convergence of artificial protein polymers and intrinsically disordered proteins. Biochemistry 57, 2405–2414 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Malay, A. D. et al. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation. Sci. Adv. 6, eabb6030 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Jehle, F. et al. Collagen pentablock copolymers form smectic liquid crystals as precursors for mussel byssus fabrication. ACS Nano 15, 6829–6838 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Priemel, T. et al. Microfluidic-like fabrication of a metal ion-cured bioadhesive by mussels. Science 374, 206–211 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Baer, A. et al. Mechanoresponsive lipid-protein nanoglobules facilitate reversible fibre formation in velvet worm slime. Nat. Commun. 8, 974 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Lu, Y. et al. Complete sequences of the velvet worm slime proteins reveal that slime formation is enabled by disulfide bonds and intrinsically disordered regions. Adv. Sci. 9, 2201444 (2022).

    Article  CAS  Google Scholar 

  18. Amini, S. et al. A diecast mineralization process forms the tough mantis shrimp dactyl club. Proc. Natl Acad. Sci. 116, 8685 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bahn, S. Y., Jo, B. H., Choi, Y. S. & Cha, H. J. Control of nacre biomineralization by Pif80 in pearl oyster. Sci. Adv. 3, e1700765 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Ibsen, C. J. S., Gebauer, D. & Birkedal, H. Osteopontin stabilizes metastable states prior to nucleation during apatite formation. Chem. Mater. 28, 8550–8555 (2016).

    Article  CAS  Google Scholar 

  21. Lim, J. et al. Liquid–liquid phase separation of short histidine- and tyrosine-rich peptides: sequence specificity and molecular topology. J. Phys. Chem. B 125, 6776–6790 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Tan, Y. et al. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat. Chem. Biol. 11, 488–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Stewart, R. J., Wang, C. S., Song, I. T. & Jones, J. P. The role of coacervation and phase transitions in the sandcastle worm adhesive system. Adv. Colloid Interface Sci. 239, 88–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Rising, A. & Harrington, M. J. Biological materials processing: time-tested tricks for sustainable fiber fabrication. Chem. Rev. 123, 2155–2199 (2022).

    Article  PubMed  Google Scholar 

  25. Muiznieks, L. D. et al. Modulated growth, stability and interactions of liquid-like coacervate assemblies of elastin. Matrix Biol. 36, 39–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Ozsvar, J. et al. Tropoelastin and elastin assembly. Front. Bioeng. Biotechnol. 9, 643110 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vrhovski, B., Jensen, S. & Weiss, A. S. Coacervation characteristics of recombinant human tropoelastin. Eur. J. Biochem. 250, 92–98 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Reichheld, S. E., Muiznieks, L. D., Keeley, F. W. & Sharpe, S. Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc. Natl Acad. Sci. USA 114, E4408–E4415 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Babinchak, W. M. et al. The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain. J. Biol. Chem. 294, 6306–6317 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Babinchak, W. M. & Surewicz, W. K. Liquid–liquid phase separation and its mechanistic role in pathological protein aggregation. J. Mol. Biol. 432, 1910–1925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, Y. et al. Liquid-liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J. Mol. Biol. 433, 166731 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Oliveira, G. D., Cordeiro, Y., Silva, J. & Vieira, T. Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. Adv. Protein Chem. Struct. Biol. 118, 289–331 (2019).

    Article  PubMed  Google Scholar 

  33. Pytowski, L., Lee, C. F., Foley, A. C., Vaux, D. J. & Jean, L. Liquid–liquid phase separation of type II diabetes-associated IAPP initiates hydrogelation and aggregation. Proc. Natl Acad. Sci. USA 117, 12050–12061 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ray, S. et al. α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 12, 705–716 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Xing, Y. et al. Amyloid aggregation under the lens of liquid–liquid phase separation. J. Phys. Chem. Lett. 12, 368–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Lin, Y., Fichou, Y., Zeng, Z., Hu, N. Y. & Han, S. Electrostatically driven complex coacervation and amyloid aggregation of tau are independent processes with overlapping conditions. ACS Chem. Neurosci. 11, 615–627 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Azzari, P. & Mezzenga, R. Liquid-liquid crystalline phase separation of evolving amyloid fibrils. Phys. Rev. Res. 5, 013137 (2023).

    Article  CAS  Google Scholar 

  38. Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Phil. Trans. R. Soc. B 357, 121–132 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239–242 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Landreh, M. et al. A pH-dependent dimer lock in spider silk protein. J. Mol. Biol. 404, 328–336 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Ayoub, N. A., Garb, J. E., Tinghitella, R. M., Collin, M. A. & Hayashi, C. Y. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2, e514 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Warwicker, J. O. Comparative studies of fibroins: II. The crystal structures of various fibroins. J. Mol. Biol. 2, 350–351 (1960).

    Article  CAS  PubMed  Google Scholar 

  44. Holland, G. P., Creager, M. S., Jenkins, J. E., Lewis, R. V. & Yarger, J. L. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 9871–9877 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Simmons, A. H., Michal, C. A. & Jelinski, L. W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Karatzas, C. N., Turner, J. D. & Lazaris-Karatzas, A. Production of biofilaments in transgenic animals. Patent US7157615B2 (2007).

  47. Xu, H. T. et al. Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim. Biotechnol. 18, 1–12 (2007).

    Article  PubMed  Google Scholar 

  48. Knight, D. P. & Vollrath, F. Liquid crystals and flow elongation in a spider’s silk production line. Proc. Biol. Sci. 266, 519–523 (1999).

    Article  PubMed Central  Google Scholar 

  49. Parent, L. R. et al. Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks. Proc. Natl. Acad. Sci. USA 115, 11507–11512 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andersson, M. et al. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol. 12, e1001921 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vollrath, F. & Knight, D. P. Structure and function of the silk production pathway in the spider Nephila edulis. Int. J. Biol. Macromol. 24, 243–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Carrington, E., Waite, J. H., Sara, G. & Sebens, K. P. Mussels as a model system for integrative ecomechanics. Annu. Rev. Mar. Sci. 7, 443–469 (2015).

    Article  ADS  Google Scholar 

  53. Harrington, M. J., Gupta, H. S., Fratzl, P. & Waite, J. H. Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J. Struct. Biol. 167, 47–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harrington, M. J. & Waite, J. H. Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. J. Exp. Biol. 210, 4307–4318 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Carrington, E. & Gosline, J. Mechanical design of mussel byssus: load cycle and strain rate dependence. Amer. Malacol. Bull. 18, 135–142 (2004).

    Google Scholar 

  56. Waite, J. H., Qin, X.-X. & Coyne, K. J. The peculiar collagens of mussel byssus. Matrix Biol. 17, 93–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Schmitt, C. N. Z., Politi, Y., Reinecke, A. & Harrington, M. J. Role of sacrificial protein-metal bond exchange in mussel byssal thread self-healing. Biomacromolecules 16, 2852–2861 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Krauss, S., Metzger, T. H., Fratzl, P. & Harrington, M. J. Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 14, 1520–1528 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Reinecke, A., Bertinetti, L., Fratzl, P. & Harrington, M. J. Cooperative behavior of a sacrificial bond network and elastic framework in providing self-healing capacity in mussel byssal threads. J. Struct. Biol. 196, 329–339 (2017).

    Article  Google Scholar 

  60. Hassenkam, T., Gutsmann, T., Hansma, P., Sagert, J. & Waite, J. H. Giant bent-core mesogens in the thread forming process of marine mussels. Biomacromolecules 5, 1351–1354 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Vitellaro-Zuccarello, L. The collagen gland of Mytilus galloprovincialis: an ultrastructural and cytochemical study on secretory granules. J. Ultrastruct. Res. 73, 135–147 (1980).

    Article  Google Scholar 

  62. Renner-Rao, M., Clark, M. & Harrington, M. J. Fiber formation from liquid crystalline collagen vesicles isolated from mussels. Langmuir 15, 9654–9664 (2019).

    Google Scholar 

  63. Priemel, T., Degtyar, E., Dean, M. N. & Harrington, M. J. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nat. Commun. 8, 14539 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  64. Reinecke, A., Brezesinski, G. & Harrington, M. J. pH-responsive self-organization of metal-binding protein motifs from biomolecular junctions in mussel byssus. Adv. Mater. Interfaces 4, 1600416 (2016).

    Article  Google Scholar 

  65. Priemel, T. et al. Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA. Proc. Natl. Acad. Sci. USA 117, 7613 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baer, A., Schmidt, S., Mayer, G. & Harrington, M. J. Fibers on the fly: multiscale mechanisms of fiber formation in the capture slime of velvet worms. Integr. Comp. Biol. 59, 1690–1699 (2019).

    Article  PubMed  Google Scholar 

  67. Read, V. M. S. & Hughes, R. N. Feeding behavior and prey choide in Macroperipatus torquatus (Onychophora). Proc. R. Soc. B 230, 483 (1987).

    ADS  Google Scholar 

  68. Röper, H. Analytical investigations on the defensive secretions from Perpatopsis moseleyi (Onychophora). Z. Naturforsch. C 32, 57–60, (1977).

    Article  Google Scholar 

  69. Concha, A. et al. Oscillation of the velvet worm slime jet by passive hydrodynamic instability. Nat. Commun. 6, 6292 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Baer, A., de Sena Oliveira, I., Steinhagen, M., Beck-Sickinger, A. G. & Mayer, G. Slime protein profiling: a non-invasive tool for species identification in Onychophora (velvet worms). J. Zool. Syst. Evolut. Res. 52, 265–272 (2014).

    Article  Google Scholar 

  71. Benkendorff, K., Beardmore, K., Gooley, A. A., Packer, N. H. & Tait, N. N. Characterisation of the slime gland secretion from the peripatus, Euperipatoides kanangrensis (Onychophora: peripatopsidae). Comp. Biochem. Physiol. B 124, 457–465 (1999).

    Article  Google Scholar 

  72. Haritos, V. S. et al. Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture. Proc. Biol. Sci. 277, 3255–3263 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Corrales-Ureña, Y. R. et al. Extracellular micro and nanostructures forming the velvet worm solidified adhesive secretion. Mater. Res. Express 4, 125013 (2017).

    Article  ADS  Google Scholar 

  74. Baer, A. et al. The internal structure of the velvet worm projectile slime: a small-angle scattering study. Small 9, 2300516 (2023).

    Article  Google Scholar 

  75. Baer, A., Hänsch, S., Mayer, G., Harrington, M. J. & Schmidt, S. Reversible supramolecular assembly of velvet worm adhesive fibers via electrostatic interactions of charged phosphoproteins. Biomacromolecules 19, 4034–4043 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Baer, A. et al. Shear-induced β-crystallite unfolding in condensed phase nanodroplets promotes fiber formation in a biological adhesive. ACS Nano 13, 4992–5001 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Poulhazan, A. et al. Peculiar phosphonate modifications of velvet worm slime revealed by advanced nuclear magnetic resonance and mass spectrometry. J. Am. Chem. Soc. 38, 20749–20754 (2023).

    Article  Google Scholar 

  78. Murray, D. T. et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–627.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tamarin, A., Lewis, P. & Askey, J. Structure and formation of byssus attachment plaque in Mytilus. J. Morphol. 149, 199–221 (1976).

    Article  CAS  PubMed  Google Scholar 

  80. Filippidi, E. et al. The microscopic network structure of mussel (Mytilus) adhesive plaques. J. R. Soc. Interface 12, 20150827 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Valois, E., Mirshafian, R. & Waite, J. H. Phase-dependent redox insulation in mussel adhesion. Sci. Adv. 6, eaaz6486 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao, H., Robertson, N. B., Jewhurst, S. A. & Waite, J. H. Probing the adhesive footprints of Mytilus californianus byssus. J. Biol. Chem. 281, 11090–11096 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Waite, J. H. Mussel adhesion — essential footwork. J. Exp. Biol. 220, 517–530 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Danner, E. W., Kan, Y., Hammer, M. U., Israelachvili, J. N. & Waite, J. H. Adhesion of mussel foot protein MEFP-5 to mica: an underwater superglue. Biochemistry 51, 6511–6518 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Lin, Q. et al. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Nat. Acad. Sci. USA 104, 3782–3786 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maier, G. P., Rapp, M. V., Waite, J. H., Israelachvili, J. N. & Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349, 628–632 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Yu, J. et al. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7, 588–590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hwang, D. S. et al. Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J. Biol. Chem. 285, 25850–25858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Renner-Rao, M. et al. Mussels fabricate porous glues via liquid-liquid phase separation of multi-protein condensates. ACS Nano 16, 20877–20890 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Deepankumar, K. et al. Liquid-liquid phase separation of the green mussel adhesive protein Pvfp-5 is regulated by the post-translated dopa amino acid. Adv. Mater. 34, e2103828 (2022).

    Article  PubMed  Google Scholar 

  92. Guo, Q. et al. Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides. Nat. Commun. 13, 5771 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, S. et al. Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic pi electrons in seawater. ACS Nano 11, 6764–6772 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Lim, S., Choi, Y. S., Kang, D. G., Song, Y. H. & Cha, H. J. The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins. Biomaterials 31, 3715–3722 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Wei, W. et al. A mussel-derived one component adhesive coacervate. Acta Biomater. 10, 1663–1670 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Yang, B., Jin, S., Park, Y., Jung, Y. M. & Cha, H. J. Coacervation of interfacial adhesive proteins for initial mussel adhesion to a wet surface. Small 14, 1803377 (2018).

    Article  Google Scholar 

  97. Stewart, R. J., Weaver, J. C., Morse, D. E. & Waite, J. H. The tube cement of Phragmatopoma californica: a solid foam. J. Exp. Biol. 207, 4727–4734 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Gruet, Y., Vovelle, J. & Grasset, M. Bioinorganic components in the tube cement of Sabellaria alveolata (L.) annelid polychaete. Can. J. Zool. 65, 837–842 (1987).

    Article  CAS  Google Scholar 

  99. Zhao, H., Sun, C., Stewart, R. J. & Waite, J. H. Cement proteins of the tube-building polychaete Phragmatopoma californica. J. Biol. Chem. 280, 42938–42944 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, C. S. & Stewart, R. J. Localization of the bioadhesive precursors of the sandcastle worm, Phragmatopoma californica (Fewkes). J. Exp. Biol. 215, 351–361 (2012).

    Article  PubMed  Google Scholar 

  101. Waite, J. H., Jensen, R. A. & Morse, D. E. Cement precursor proteins of the reef-building polychaete Phragmatopoma californica (Fewkes). Biochemistry 31, 5733–5738 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Endrizzi, B. J. & Stewart, R. J. Glueomics: an expression survey of the adhesive gland of the sandcastle worm. J. Adhes. 85, 546–559 (2009).

    Article  CAS  Google Scholar 

  103. Wang, C. S. & Stewart, R. J. Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): catechol oxidase catalyzed curing through peptidyl-DOPA. Biomacromolecules 14, 1607–1617 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Ketan, A. G. et al. Phase separation and ageing of glycine-rich protein from tick adhesive. Preprint at bioRxiv https://doi.org/10.1101/2023.03.27.534361 (2023).

  105. Wegst, U. G. K. & Ashby, M. F. The mechanical efficiency of natural materials. Philos. Mag. 84, 2167–2186 (2004).

    Article  ADS  CAS  Google Scholar 

  106. Wang, R. & Gupta, H. S. Deformation and fracture mechanisms of bone and nacre. Annu. Rev. Mater. Res. 41, 41–73 (2011).

    Article  ADS  CAS  Google Scholar 

  107. Naleway, S. E., Taylor, J. R. A., Porter, M. M., Meyers, M. A. & McKittrick, J. Structure and mechanical properties of selected protective systems in marine organisms. Mater. Sci. Engineering C. 59, 1143–1167 (2016).

    Article  CAS  Google Scholar 

  108. Huang, W. et al. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, 1901561 (2019).

    Article  ADS  CAS  Google Scholar 

  109. Nepal, D. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  110. Gong, Y. U. T. et al. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl Acad. Sci. USA 109, 6088–6093 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Politi, Y., Arad, T., Klein, E., Weiner, S. & Addadi, L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306, 1161–1164 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011).

    Article  ADS  CAS  Google Scholar 

  113. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Gower, L. B. & Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 210, 719–734 (2000).

    Article  ADS  CAS  Google Scholar 

  115. Wolf, S. E. et al. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of ‘polymer-induced liquid precursor’ processes. J. Am. Chem. Soc. 133, 12642–12649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stapane, L. et al. Avian eggshell formation reveals a new paradigm for vertebrate mineralization via vesicular amorphous calcium carbonate. J. Biol. Chem. 295, 15853–15869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mohanram, H., Georges, T., Pervushin, K., Azaïs, T. & Miserez, A. Self-assembly of a barnacle cement protein (MrCP20) into adhesive nanofibrils with concomitant regulation of CaCO3 polymorphism. Chem. Mater. 33, 9715–9724 (2021).

    Article  CAS  Google Scholar 

  118. Amini, S., Tadayon, M., Idapalapati, S. & Miserez, A. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nat. Mater. 14, 943–950 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Bewernitz, M. A., Gebauer, D., Long, J., Cölfen, H. & Gower, L. B. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss. 159, 291–312 (2012).

    Article  ADS  CAS  Google Scholar 

  120. Miserez, A., Li, Y., Waite, J. H. & Zok, F. Jumbo squid beaks: inspiration for design of robust organic composites. Acta Biomater. 3, 139–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Miserez, A., Schneberk, T., Sun, C., Zok, F. W. & Waite, J. H. The transition from stiff to compliant materials in squid beaks. Science 319, 1816–1819 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Miserez, A., Rubin, D. & Waite, J. H. Cross-linking chemistry of squid beak. J. Biol. Chem. 285, 38115–38124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gabryelczyk, B. et al. Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides. Nat. Commun. 10, 5465 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  124. Cai, H. et al. Self-coacervation of modular squid beak proteins — a comparative study. Soft Matter 13, 7740–7752 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  125. Wonderly, W. R. et al. A multi-tasking polypeptide from bloodworm jaws: catalyst, template, and copolymer in film formation. Matter 5, 1890–1908 (2022).

    Article  CAS  Google Scholar 

  126. Masahiro, Y., Yumi, I., Taro, N., Azuma, T. & Yoshihiro, F. Purification and characterization of coacervate-forming cuticular proteins from Papilio xuthus pupae. Zool. Sci. 30, 534–542 (2013).

    Article  Google Scholar 

  127. Holten-Andersen, N., Fantner, G. E., Hohlbauch, S., Waite, J. H. & Zok, F. W. Protective coatings on extensible biofibres. Nat. Mater. 6, 669–672 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Holten-Andersen, N., Zhao, H. & Waite, J. H. Stiff coatings on compliant biofibers: the cuticle of Mytilus californianus byssal threads. Biochemistry 48, 2752–2759 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H. & Fratzl, P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328, 216–220 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jehle, F. et al. Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases. Nat. Commun. 11, 862 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vitellaro-Zuccarello, L. Ultrastructural and cytochemical study on the enzyme gland of the foot of a mollusk. Tissue Cell 13, 701–713 (1981).

    Article  Google Scholar 

  132. Mesko, M. et al. Catechol-vanadium binding enhances cross-linking and mechanics of a mussel byssus coating protein. Chem. Mater. 33, 6530–6540 (2021).

    Article  CAS  Google Scholar 

  133. Blocher, W. C. & Perry, S. L. Complex coacervate-based materials for biomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1442 (2017).

    Article  Google Scholar 

  134. Horn, J. M., Kapelner, R. A. & Obermeyer, A. C. Macro- and microphase separated protein-polyelectrolyte complexes: design parameters and current progress. Polymers 11, 578 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yeo, G. C. et al. Fabricated elastin. Adv. Healthc. Mater. 4, 2530–2556 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 589, 2477–2486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. MacKay, J. A. et al. Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 8, 993–999 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  139. Bhattacharyya, J. et al. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat. Commun. 6, 7939 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  140. Peddi, S., Roberts, S. K. & MacKay, J. A. Nanotoxicology of an elastin-like polypeptide rapamycin formulation for breast cancer. Biomacromolecules 21, 1091–1102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Luginbuhl, K. M. et al. Recombinant synthesis of hybrid lipid–peptide polymer fusions that self-assemble and encapsulate hydrophobic drugs. Angew. Chem. Int. Ed. 56, 13979–13984 (2017).

    Article  CAS  Google Scholar 

  142. Amiram, M., Luginbuhl, K. M., Li, X., Feinglos, M. N. & Chilkoti, A. Injectable protease-operated depots of glucagon-like peptide-1 provide extended and tunable glucose control. Proc. Natl Acad. Sci. USA 110, 2792–2797 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  143. Amiram, M., Luginbuhl, K. M., Li, X., Feinglos, M. N. & Chilkoti, A. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection. J. Control. Release 172, 144–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Luginbuhl, K. M. et al. One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat. Biomed. Eng. 1, 0078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li, J. et al. Engineered near-infrared fluorescent protein assemblies for robust bioimaging and therapeutic applications. Adv. Mater. 32, 2000964 (2020).

    Article  CAS  Google Scholar 

  146. Ma, C. et al. Significantly improving the bioefficacy for rheumatoid arthritis with supramolecular nanoformulations. Adv. Mater. 33, 2100098 (2021).

    Article  CAS  Google Scholar 

  147. Wang, S. et al. Improving bioavailability of hydrophobic prodrugs through supramolecular nanocarriers based on recombinant proteins for osteosarcoma treatment. Angew. Chem. Int. Ed. 60, 11252–11256 (2021).

    Article  CAS  Google Scholar 

  148. Lv, J., Fan, Q., Wang, H. & Cheng, Y. Polymers for cytosolic protein delivery. Biomaterials 218, 119358 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Nelson, A. L., Dhimolea, E. & Reichert, J. M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov. 9, 767–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Pakulska, M. M., Miersch, S. & Shoichet, M. S. Designer protein delivery: from natural to engineered affinity-controlled release systems. Science 351, aac4750 (2016).

    Article  PubMed  Google Scholar 

  151. Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Du, S., Liew, S. S., Li, L. & Yao, S. Q. Bypassing endocytosis: direct cytosolic delivery of proteins. J. Am. Chem. Soc. 140, 15986–15996 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Goswami, R., Jeon, T., Nagaraj, H., Zhai, S. & Rotello, V. M. Accessing intracellular targets through nanocarrier-mediated cytosolic protein delivery. Trends Pharmacol. Sci. 41, 743–754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lim, Z. W., Ping, Y. & Miserez, A. Glucose-responsive peptide coacervates with high encapsulation efficiency for controlled release of insulin. Bioconjug. Chem. 29, 2176–2180 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Lim, Z. W., Varma, V. B., Ramanujan, R. V. & Miserez, A. Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer. Acta Biomater. 110, 221–230 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Sun, Y. et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat. Chem. 14, 274–283 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Iwata, T. et al. Liquid droplet formation and facile cytosolic translocation of igg in the presence of attenuated cationic amphiphilic lytic peptides. Angew. Chem. Int. Ed. 60, 19804–19812 (2021).

    Article  CAS  Google Scholar 

  158. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Liu, J., Zhorabek, F., Dai, X., Huang, J. & Chau, Y. Minimalist design of an intrinsically disordered protein-mimicking scaffold for an artificial membraneless organelle. ACS Cent. Sci. 8, 493–500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu, J. et al. Multifaceted cargo recruitment and release from artificial membraneless organelles. Small 18, 2201721 (2022).

    Article  CAS  Google Scholar 

  161. Guo, Q., Chen, J., Wang, J., Zeng, H. & Yu, J. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale 12, 1307–1324 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Pinnaratip, R., Bhuiyan, M. S. A., Meyers, K., Rajachar, R. M. & Lee, B. P. Multifunctional biomedical adhesives. Adv. Healthc. Mater. 8, 1801568 (2019).

    Article  Google Scholar 

  163. Hwang, D. S. et al. Viscosity and interfacial properties in a mussel-inspired adhesive coacervate. Soft Matter 6, 3232–3236, (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shao, H., Bachus, K. N. & Stewart, R. J. A water-borne adhesive modeled after the sandcastle glue of P. californica. Macromol. Biosci. 9, 464–471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Stewart, R. J., Wang, C. S. & Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives. Adv. Colloid Interface Sci. 167, 85–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Winslow, B. D., Shao, H., Stewart, R. J. & Tresco, P. A. Biocompatibility of adhesive complex coacervates modeled after the sandcastle glue of Phragmatopoma californica for craniofacial reconstruction. Biomaterials 31, 9373–9381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shao, H. & Stewart, R. J. Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Adv. Mater. 22, 729–733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kim, H. J., Yang, B., Park, T. Y., Lim, S. & Cha, H. J. Complex coacervates based on recombinant mussel adhesive proteins: their characterization and applications. Soft Matter 13, 7704–7716 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  169. Hwang, D. S., Waite, J. H. & Tirrell, M. Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid–recombinant mussel adhesive protein coatings on titanium. Biomaterials 31, 1080–1084 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Kim, H. J., Choi, B.-H., Jun, S. H. & Cha, H. J. Sandcastle worm-inspired blood-resistant bone graft binder using a sticky mussel protein for augmented in vivo bone regeneration. Adv. Healthc. Mater. 5, 3191–3202 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Kim, H. J. et al. Mussel adhesion-employed water-immiscible fluid bioadhesive for urinary fistula sealing. Biomaterials 72, 104–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Cui, M. et al. Exploiting mammalian low-complexity domains for liquid–liquid phase separation-driven underwater adhesive coatings. Sci. Adv. 5, eaax3155 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kim, H. J. et al. Preclinical evaluation of a regenerative immiscible bioglue for vesico-vaginal fistula. Acta Biomater. 125, 183–196 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Park, W. H., Lee, J., Kim, H. J., Joo, K. I. & Cha, H. J. Sutureless full-thickness skin grafting using a dual drug-in-bioadhesive coacervate. Chem. Eng. J. 446, 137272 (2022).

    Article  CAS  Google Scholar 

  175. Jeon, E. Y. et al. Precisely localized bone regeneration mediated by marine-derived microdroplets with superior BMP-2 binding affinity. Small 18, 2200416 (2022).

    Article  CAS  Google Scholar 

  176. Ahn, B. K. et al. High-performance mussel-inspired adhesives of reduced complexity. Nat. Commun. 6, 8663 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  177. Sun, J. et al. Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew. Chem. Int. Ed. 60, 23687–23694 (2021).

    Article  CAS  Google Scholar 

  178. Peng, Q. et al. Coacervate-based instant and repeatable underwater adhesive with anticancer and antibacterial properties. ACS Appl. Mater. Interfaces 13, 48239–48251 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Wang, Z. et al. Facile biomimetic self-coacervation of tannic acid and polycation: tough and wide pH range of underwater adhesives. Chem. Eng. J. 404, 127069 (2021).

    Article  CAS  Google Scholar 

  180. Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. Huynh, T.-P. et al. Efficient wet adhesion through mussel-inspired proto-coacervates. Adv. Mater. Interfaces 10, 2201491 (2023).

    Article  CAS  Google Scholar 

  182. Ma, C. et al. Ultra-strong bio-glue from genetically engineered polypeptides. Nat. Commun. 12, 3613 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, Z. et al. Molecularly engineered protein glues with superior adhesion performance. Adv. Mater. 34, 2204590 (2022).

    Article  CAS  Google Scholar 

  184. Xiao, L. et al. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance. Angew. Chem. Int. Ed. 60, 12082–12089 (2021).

    Article  CAS  Google Scholar 

  185. Wei, Z. et al. An engineered protein−Au bioplaster for efficient skin tumor therapy. Adv. Mater. 34, 2110062 (2022).

    Article  CAS  Google Scholar 

  186. Zhang, L. et al. Genetically engineered supercharged polypeptide fluids: fast and persistent self-ordering induced by touch. Angew. Chem. Int. Ed. 57, 6878–6882 (2018).

    Article  ADS  CAS  Google Scholar 

  187. Dong, C. & Lv, Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8, 42 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Acosta, S., Quintanilla-Sierra, L., Mbundi, L., Reboto, V. & Rodríguez-Cabello, J. C. Elastin-like recombinamers: deconstructing and recapitulating the functionality of extracellular matrix proteins using recombinant protein polymers. Adv. Funct. Mater. 30, 1909050 (2020).

    Article  CAS  Google Scholar 

  189. Nivison-Smith, L., Rnjak, J. & Weiss, A. S. Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomater. 6, 354–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Aghaei-Ghareh-Bolagh, B., Mithieux, S. M. & Weiss, A. S. Elastic proteins and elastomeric protein alloys. Curr. Opin. Biotechnol. 39, 56–60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Serban, M. A., Kluge, J. A., Laha, M. M. & Kaplan, D. L. Modular elastic patches: mechanical and biological effects. Biomacromolecules 11, 2230–2237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Roberts, S. et al. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17, 1154–1163 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sheridan, C. Why gene therapies must go virus-free. Nat. Biotechnol. 41, 737–739 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Mohammadi, P. et al. Phase transitions as intermediate steps in the formation of molecularly engineered protein fibers. Commun. Biol. 1, 86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Duraj-Thatte, A. M. et al. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nat. Chem. Biol. 17, 732–738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Amstad, E. & Harrington, M. J. From vesicles to materials: bioinspired strategies for fabricating hierarchically structured soft matter. Phil. Trans. R. Soc. A 379, 20200338 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  197. Gantenbein, S. et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561, 226–230 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  198. Shen, Y. et al. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  199. Shen, Y. et al. From protein building blocks to functional materials. ACS Nano 15, 5819–5837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mohammadi, P. et al. Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Sci. Adv. 5, eaaw2541 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mohammadi, P., Beaune, G., Stokke, B. T., Timonen, J. V. I. & Linder, M. B. Self-coacervation of a silk-like protein and its use as an adhesive for cellulosic materials. ACS Macro Lett. 7, 1120–1125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mohammadi, P. et al. Bioinspired functionally graded composite assembled using cellulose nanocrystals and genetically engineered proteins with controlled biomineralization. Adv. Mater. 33, 2102658 (2021).

    Article  CAS  Google Scholar 

  203. Muiznieks, L. D., Sharpe, S., Pomès, R. & Keeley, F. W. Role of liquid–liquid phase separation in assembly of elastin and other extracellular matrix proteins. J. Mol. Biol. 430, 4741–4753 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Sun, H. et al. Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat. Commun. 12, 4064 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  205. Rog, O., Köhler, S. & Dernburg, A. F. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6, e21455 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Bouligand, Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4, 189–217 (1972).

    Article  CAS  PubMed  Google Scholar 

  207. Giraud-Guille, M. M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 42, 167–180 (1988).

    Article  CAS  PubMed  Google Scholar 

  208. Rofouie, P., Pasini, D. & Rey, A. D. Nano-scale surface wrinkling in chiral liquid crystals and plant-based plywoods. Soft Matter 11, 1127–1139 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  209. López-Guimet, J., Andilla, J., Loza-Alvarez, P. & Egea, G. High-resolution morphological approach to analyse elastic laminae injuries of the ascending aorta in a murine model of Marfan syndrome. Sci. Rep. 7, 1505 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  210. Vidal Ceballos, A. et al. Liquid to solid transition of elastin condensates. Proc. Natl Acad. Sci. USA 119, e2202240119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Krone, M. G. et al. Role of water in mediating the assembly of Alzheimer amyloid-β Aβ16−22 protofilaments. J. Am. Chem. Soc. 130, 11066–11072 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Nyström, G., Arcari, M. & Mezzenga, R. Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids. Nat. Nanotechnol. 13, 330–336 (2018).

    Article  ADS  PubMed  Google Scholar 

  213. Wang, L.-Q. et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat. Struct. Mol. Biol. 27, 598–602 (2020).

    Article  PubMed  Google Scholar 

  214. Linder, M. B. Recipe for squid beak. Nat. Chem. Biol. 11, 455–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Matsuyama, A. & Tanaka, F. Theory of solvation-induced reentrant phase separation in polymer solutions. Phys. Rev. Lett. 16, 341–344 (1990).

    Article  ADS  Google Scholar 

  216. Overbeek, J. T. G. & Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 49, 7–26 (1957).

    Article  CAS  Google Scholar 

  217. Azzari, P., Bagnani, M. & Mezzenga, R. Liquid–liquid crystalline phase separation in biological filamentous colloids: nucleation, growth and order–order transitions of cholesteric tactoids. Soft Matter 17, 6627–6636 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  218. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  ADS  CAS  Google Scholar 

  219. Azzari, P. & Mezzenga, R. LLPS vs. LLCPS: analogies and differences. Soft Matter 19, 1873–1881 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.J.H. acknowledges financial support from a Canada Research Chair Award (CRC Tier 2 950-231953). A.M. acknowledges financial support from the Singapore Ministry of Education (MOE) through an Academic Research (AcRF) Tier 3 grant (No. MOE 2019-T3-1-012) and from the strategic initiative on biomimetic and sustainable materials at Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Matthew J. Harrington, Raffaele Mezzenga or Ali Miserez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrington, M.J., Mezzenga, R. & Miserez, A. Fluid protein condensates for bio-inspired applications. Nat Rev Bioeng 2, 260–278 (2024). https://doi.org/10.1038/s44222-023-00133-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00133-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing