Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial engineering strategies to utilize waste feedstock for sustainable bioproduction

Abstract

The desire to move from a fossil fuel-based ‘take–make–dispose’ economy to a bio-based circular economy has generated great interest in microbial metabolic engineering for its ability to create cell factories that can produce value-added commodity chemicals via biological means. However, efforts have focused largely on optimizing bioconversion pathways to maximize target compound productivity. Conversely, improvements in feedstock utilization — particularly waste feedstocks that do not compete with food resources — have lagged behind. Although waste feedstocks are abundant, their inefficient utilization by microorganisms presents a major barrier to achieving sustainable microbial bioproduction. This Review describes efforts to develop novel microbial cell factories for valorizing one-carbon waste, horticultural waste, food waste and animal agricultural waste. We discuss state-of-the-art strategies that leverage synthetic biology and multi-omics to improve waste utilization by engineered microorganisms and provide perspectives on the future of waste feedstock valorization.

Key points

  • Waste feedstock valorization can play a key role in enabling the development of a bio-based circular economy.

  • Although advances in microbial metabolic engineering have enabled the microbial production of valuable chemicals, progress in utilizing waste feedstocks as substrates has lagged.

  • One-carbon, horticultural, food, and animal agricultural waste feedstocks can be valorized for bio-based manufacturing but face critical challenges to their efficient utilization.

  • Innovations in synthetic biology, multi-omics and other diverse disciplines have facilitated the development of strategies that can accelerate waste feedstock utilization, drawing us nearer to achieving a circular economy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Waste feedstock utilization by engineered microorganisms for biomanufacturing.
Fig. 2: Major metabolic pathways for utilization of waste feedstock.
Fig. 3: Advanced strategies to develop microbial-based waste feedstock valorization technologies.

Similar content being viewed by others

References

  1. Mao, N. et al. Future trends in synthetic biology in Asia. Adv. Gen. 2, e10038 (2021).

    Article  Google Scholar 

  2. Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Cat. 2, 18–33 (2019).

    Article  CAS  Google Scholar 

  3. Fortune Business Insights. Bio-Based Chemicals Market Size, Share & COVID-19 Impact Analysis, By Product Category, By Application and Regional Forecast, 2021-2028 https://www.fortunebusinessinsights.com/bio-based-chemicals-market-106586 (2022).

  4. Intasian, P. et al. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. 121, 10367–10451 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, W. et al. Metabolic engineering strategies to enable microbial utilization of c1 feedstocks. Nat. Chem. Biol. 17, 845–855 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, H. M., Chae, T. U., Choi, S. Y., Kim, W. J. & Lee, S. Y. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat. Chem. Biol. 15, 721–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Graham-Rowe, D. Agriculture: beyond food versus fuel. Nature 474, S6–S8 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Francois, J. M., Alkim, C. & Morin, N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. Biotechnol. Biofuels 13, 118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pavan, M. et al. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab. Eng. 71, 117–141 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Kaza, S. et al. A Global Snapshot of Solid Waste Management to 2050 https://openknowledge.worldbank.org/handle/10986/30317 (2018).

  12. Park, G. W. et al. Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: a state-of-the-art review. Renew. Sustain. Energy Rev. 157, 112025 (2022).

    Article  CAS  Google Scholar 

  13. Reshmy, R. et al. Microbial valorization of lignin: prospects and challenges. Bioresour. Technol. 344, 126240 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Usmani, Z. et al. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 346, 126444 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Zotta, T., Solieri, L., Iacumin, L., Picozzi, C. & Gullo, M. Valorization of cheese whey using microbial fermentations. Appl. Microbiol. Biotechnol. 104, 2749–2764 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Pan, F. D., Liu, S., Xu, Q. M., Chen, X. Y. & Cheng, J. S. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens hm618. Biochem. Eng. J. 172, 108036–108036 (2021).

    Article  CAS  Google Scholar 

  17. Ravindran, R. & Jaiswal, A. K. Exploitation of food industry waste for high-value products. Trends Biotechnol 34, 58–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Merino, D., Bertolacci, L., Paul, U. C., Simonutti, R. & Athanassiou, A. Avocado peels and seeds: Processing strategies for the development of highly antioxidant bioplastic films. ACS Appl. Mater. Interfaces 13, 38688–38699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dürre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63–72 (2015).

    Article  PubMed  Google Scholar 

  20. Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Venkata Mohan, S., Modestra, J. A., Amulya, K., Butti, S. K. & Velvizhi, G. A circular bioeconomy with biobased products from CO2 sequestration. Trends Biotechnol. 34, 506–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. IEA. CO2 Emissions in 2022 https://www.iea.org/reports/co2-emissions-in-2022 (2023).

  23. Tollefson, J. Carbon emissions hit new high: warning from COP27. Nature https://doi.org/10.1038/d41586-022-03657-w (2022).

  24. Qiao, W. et al. Challenges and opportunities in c1-based biomanufacturing. Bioresour. Technol. 364, 128095 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Liang, F., Englund, E., Lindberg, P. & Lindblad, P. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab. Eng. 46, 51–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Wei, L., Wang, Q., Xin, Y., Lu, Y. & Xu, J. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of rubisco activase. Algal Res. 27, 366–375 (2017).

    Article  Google Scholar 

  27. Antonovsky, N. et al. Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115–125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang, B., Zhao, Y. & Yang, J. Recent advances in developing artificial autotrophic microorganism for reinforcing CO2 fixation. Front. Microbiol. 11, 592631 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019). This work produced a fully synthetic autotrophic E. coli that can generate biomass entirely from CO2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yishai, O., Lindner, S. N., Gonzalez de la Cruz, J., Tenenboim, H. & Bar-Even, A. The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Gassler, T. et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210–216 (2020). This work engineered the peroxisomal methanol-assimilation pathway of P. pastoris into a CO2-fixation pathway resembling the CBB cycle, allowing it to grow on CO2 as a sole carbon source.

    Article  CAS  PubMed  Google Scholar 

  32. Baumschabl, M. et al. Conversion of CO2 into organic acids by engineered autotrophic yeast. Proc. Natl Acad. Sci. USA 119, e2211827119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Bang, J. & Lee, S. Y. Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc. Natl Acad. Sci. USA 115, E9271–E9279 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Molitor, B. et al. Carbon recovery by fermentation of co-rich off gases — turning steel mills into biorefineries. Bioresour. Technol. 215, 386–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Köpke, M. et al. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl. Environ. Microbiol. 80, 3394–3403 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Köpke, M. et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl. Environ. Microbiol. 77, 5467–5475 (2011).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. de Souza Pinto Lemgruber, R. et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab. Eng. 53, 14–23 (2019).

    Article  PubMed  Google Scholar 

  39. Jia, D. et al. Metabolic engineering of gas-fermenting Clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol. ACS Synth. Biol. 10, 2628–2638 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Garg, S., Wu, H., Clomburg, J. M. & Bennett, G. N. Bioconversion of methane to c-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5gb1c. Metab. Eng. 48, 175–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen, D. T. N. et al. Metabolic engineering of the type I methanotroph Methylomonas sp. Dh-1 for production of succinate from methane. Metab. Eng. 54, 170–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen, T. T., Lee, O. K., Naizabekov, S. & Lee, E. Y. Bioconversion of methane to cadaverine and lysine using an engineered type II methanotroph, Methylosinus trichosporium ob3b. Green Chem. 22, 7803–7811 (2020).

    Article  CAS  Google Scholar 

  43. Henard, C. A. et al. Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci. Rep. 6, 21585 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen, D. T. N. et al. Metabolic engineering of type II methanotroph, Methylosinus trichosporium ob3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metab. Eng. 59, 142–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Meyer, F. et al. Methanol-essential growth of Escherichia coli. Nat. Commun. 9, 1508 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Espinosa, M. I. et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tuyishime, P. et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab. Eng. 49, 220–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, H. J. et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat. Cat. 2, 342–353 (2019).

    Article  CAS  Google Scholar 

  49. Lin, M. T., Salihovic, H., Clark, F. K. & Hanson, M. R. Improving the efficiency of rubisco by resurrecting its ancestors in the family Solanaceae. Sci. Adv. 8, eabm6871 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bennett, R. K., Steinberg, L. M., Chen, W. & Papoutsakis, E. T. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50, 81–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Lv, X. et al. C1-based biomanufacturing: advances, challenges and perspectives. Bioresour. Technol. 367, 128259 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Zoghlami, A. & Paës, G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front. Chem. 7, 874 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Panda, S. K. & Ray, R. C. In Environmental Microbial Biotechnology (eds Sukla, L. B., Pradhan, N., Panda, S. & Mishra, B. K.) 203-221 (Springer International Publishing, 2015).

  54. Dahmen, N., Lewandowski, I., Zibek, S. & Weidtmann, A. Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. Glob. Change Biol. Bioenergy 11, 107–117 (2019).

    Article  Google Scholar 

  55. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Lin, L. et al. Systems biology-guided biodesign of consolidated lignin conversion. Green. Chem. 18, 5536–5547 (2016).

    Article  CAS  Google Scholar 

  57. Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Husaini, A., Fisol, F. A., Yun, L. C., Hussain, M. H. M. & Roslan, H. A. Lignocellulolytic enzymes produced by tropical white rot fungi during biopulping of Acacia mangium wood chips. J. Biochem. Technol. 3, 245–250 (2011).

    CAS  Google Scholar 

  59. Varman, A. M. et al. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc. Natl Acad. Sci. USA 113, E5802–E5811 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, W. et al. Lignin valorization: two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Sci. Rep. 7, 8420 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Wu, W., Liu, F. & Singh, S. Toward engineering E. coli with an autoregulatory system for lignin valorization. Proc. Natl Acad. Sci. USA 115, 2970–2975 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lo, T.-M. et al. Biosynthesis of commodity chemicals from oil palm empty fruit bunch lignin. Front. Microbiol. 12, 663642 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lo, T.-M., Chng, S. H., Teo, W. S., Cho, H.-S. & Chang, M. W. A two-layer gene circuit for decoupling cell growth from metabolite production. Cell Syst. 3, 133–143 (2016). This work developed a smart-production system that utilizes a hydroxycinnamic acid biosensor to balance cell growth and biochemical production, demonstrating a generalizable engineering strategy for sustainable microbial-based biotransformation applications, particularly in lignin valorization.

    Article  CAS  PubMed  Google Scholar 

  64. Xiong, W., Reyes, L. H., Michener, W. E., Maness, P.-C. & Chou, K. J. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnol. Bioeng. 115, 1755–1763 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Cunha, J. T., Soares, P. O., Baptista, S. L., Costa, C. E. & Domingues, L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered 11, 883–903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, L. et al. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase–xylanase cell-surfaced yeast consortium. Prep. Biochem. Biotechnol. 48, 653–661 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Claes, A., Deparis, Q., Foulquié-Moreno, M. R. & Thevelein, J. M. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metab. Eng. 59, 131–141 (2020). This work created a single S. cerevisiae strain for the consolidated bioprocessing of lignocellulose waste, wherein the microorganism secretes lignocellulolytic enzymes, hydrolyzes polysaccharides into sugars, and ferments both hexose and pentose sugars.

    Article  CAS  PubMed  Google Scholar 

  68. Chung, D., Cha, M., Guss, A. M. & Westpheling, J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl Acad. Sci. USA 111, 8931–8936 (2014). This work demonstrated the growth of a thermophilic bacteria on untreated switchgrass, thus eliminating the need for costly pre-treatment and enzymatic hydrolysis of the waste.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hamilton-Brehm, S. D. et al. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl. Environ. Microbiol. 76, 1014–1020 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Jönsson, L. J. & Martín, C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016).

    Article  PubMed  Google Scholar 

  71. Nouri, H., Moghimi, H., Marashi, S.-A. & Elahi, E. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. PLoS One 15, e0240330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, L. et al. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat. Commun. 12, 4975 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shui, Z. X. et al. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl. Microbiol. Biotechnol. 99, 5739–5748 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction https://www.fao.org/3/ca6030en/ca6030en.pdf (2019).

  75. Forbes, H., Quested, T. & O’Connor, C. Food Waste Index Report 2021 https://wedocs.unep.org/bitstream/handle/20.500.11822/35280/FoodWaste.pdf (2021).

  76. Jaglo, K., Kenny, S. & Stephenson, J. From Farm to Kitchen: The Environmental Impacts of U.S. Food Waste https://www.epa.gov/system/files/documents/2021-11/from-farm-to-kitchen-the-environmental-impacts-of-u.s.-food-waste_508-tagged.pdf (2021).

  77. Paritosh, K. et al. Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed. Res. Int. 2017, 2370927 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Katami, T., Yasuhara, A. & Shibamoto, T. Formation of dioxins from incineration of foods found in domestic garbage. Environ. Sci. Technol. 38, 1062–1065 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Rong, L. et al. Engineering Yarrowia lipolytica to produce itaconic acid from waste cooking oil. Front. Bioeng. Biotechnol. 10, 888869 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fickers, P., Marty, A. & Nicaud, J. M. The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv. 29, 632–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Ng, T.-K. et al. Engineering Yarrowia lipolytica towards food waste bioremediation: production of fatty acid ethyl esters from vegetable cooking oil. J. Biosci. Bioeng. 129, 31–40 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Edwards, M. C. & Doran-Peterson, J. Pectin-rich biomass as feedstock for fuel ethanol production. Appl. Microbiol. Biotechnol. 95, 565–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martins, L. C., Monteiro, C. C., Semedo, P. M. & Sá-Correia, I. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges. Appl. Microbiol. Biotechnol. 104, 6527–6547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Protzko, R. J. et al. Engineering Saccharomyces cerevisiae for co-utilization of d-galacturonic acid and d-glucose from citrus peel waste. Nat. Commun. 9, 5059 (2018). This work demonstrated that the consumption of d-galacturonic acid, the primary sugar in the pectin-rich biomass, by yeast is inhibited by the presence of d-glucose. This inhibition can be rescued by using a dedicated d-galacturonic acid transporter, yielding a strain that can metabolize d-galacturonic acid for chemical production and d-glucose for improved redox balance.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  85. Jeong, D., Ye, S., Park, H. & Kim, S. R. Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae. Bioresour. Technol. 295, 122259 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Satari, B. & Karimi, K. Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153–167 (2018).

    Article  Google Scholar 

  87. Bier, M. C. J., Medeiros, A. B. P. & Soccol, C. R. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol. 121, 137–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Chubukov, V. et al. Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase ahpc. Appl. Environ. Microbiol. 81, 4690–4696 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lad, B. C., Coleman, S. M. & Alper, H. S. Microbial valorization of underutilized and nonconventional waste streams. J. Ind. Microbiol. Biotechnol. 49, kuab056 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Shi, J., Chen, Y., Liu, X. & Li, D. Rhamnolipid production from waste cooking oil using newly isolated halotolerant Pseudomonas aeruginosa m4. J. Clean. Prod. 278, 123879 (2021).

    Article  CAS  Google Scholar 

  91. Wang, P. et al. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnol. Appl. Biochem. 67, 307–316 (2020).

    CAS  PubMed  Google Scholar 

  92. Hu, Y., Wang, F. & Chi, Y. The evolution of microbial community during acclimation for high sodium food waste anaerobic digestion. Waste Biomass Valoriz. 11, 6057–6063 (2020).

    Article  CAS  Google Scholar 

  93. Ritchie, H., Rosado, P. & Roser, M. Meat and Dairy Production. Our World in Data https://ourworldindata.org/meat-production (2017).

  94. Kumar Awasthi, M. et al. Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: a review. Bioresour. Technol. 344, 126193 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Da Silva, R. R. Keratinases as an alternative method designed to solve keratin disposal on the environment: its relevance on agricultural and environmental chemistry. J. Agric. Food Chem. 66, 7219–7221 (2018).

    Article  PubMed  Google Scholar 

  96. Siso, M. I. G. The biotechnological utilization of cheese whey: a review. Bioresour. Technol. 57, 1–11 (1996).

    Article  Google Scholar 

  97. Mano, J., Liu, N., Hammond, J. H., Currie, D. H. & Stephanopoulos, G. Engineering Yarrowia lipolytica for the utilization of acid whey. Metab. Eng. 57, 43–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Shen, J., Chen, J., Jensen, P. R. & Solem, C. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production. Microb. Cell Fact. 18, 51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Riedel, S. L. et al. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 214, 119–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Rodríguez G, J. E., Brojanigo, S., Basaglia, M., Favaro, L. & Casella, S. Efficient production of polyhydroxybutyrate from slaughterhouse waste using a recombinant strain of Cupriavidus necator dsm 545. Sci. Total. Environ. 794, 148754 (2021).

    Article  ADS  PubMed  Google Scholar 

  101. Peng, Z., Mao, X., Zhang, J., Du, G. & Chen, J. Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnol. Biofuels 13, 61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hassan, M. A. et al. Biochemical characterisation and application of keratinase from Bacillus thuringiensis MT1 to enable valorisation of hair wastes through biosynthesis of vitamin B-complex. Int. J. Biol. Macromol. 153, 561–572 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Gong, J. S. et al. Efficient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzyme Microb. Technol. 137, 109550 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Rajput, R., Tiwary, E., Sharma, R. & Gupta, R. Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability. Enzyme Microb. Technol. 51, 131–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Jang, W. D., Kim, G. B., Kim, Y. & Lee, S. Y. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering. Curr. Opin. Biotechnol. 73, 101–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Guo, Y. et al. Structure- and computational-aided engineering of an oxidase to produce isoeugenol from a lignin-derived compound. Nat. Commun. 13, 7195 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Trott, O. & Olson, A. J. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wijma, H. J. et al. Computationally designed libraries for rapid enzyme stabilization. Protein Eng. Des. Sel. 27, 49–58 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ollikainen, N., de Jong, R. M. & Kortemme, T. Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity. PLoS Comput. Biol. 11, e1004335 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lu, H. et al. Machine learning-aided engineering of hydrolases for pet depolymerization. Nature 604, 662–667 (2022). This work employed structure-guided machine learning techniques to design thermostable enhanced variants of PET hydrolase that can operate at 50 °C, potentially enabling promising plastic waste recycling applications.

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synth. Biol. 9, 2927–2935 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Delepine, B., Duigou, T., Carbonell, P. & Faulon, J. L. Retropath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Duigou, T., du Lac, M., Carbonell, P. & Faulon, J. L. Retrorules: a database of reaction rules for engineering biology. Nucleic Acids Res. 47, D1229–D1235 (2019).

    Article  PubMed  Google Scholar 

  114. Koch, M., Duigou, T. & Faulon, J. L. Reinforcement learning for bioretrosynthesis. ACS Synth. Biol. 9, 157–168 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. Retrobiocat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Robinson, C. J. et al. Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metab. Eng. 60, 168–182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Probst, D. et al. Biocatalysed synthesis planning using data-driven learning. Nat. Commun. 13, 964 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zheng, S. et al. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nat. Commun. 13, 3342 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Levin, I., Liu, M., Voigt, C. A. & Coley, C. W. Merging enzymatic and synthetic chemistry with computational synthesis planning. Nat. Commun. 13, 7747 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cook, T. B. et al. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J. Ind. Microbiol. Biotechnol. 45, 517–527 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Sanford, P. A. & Woolston, B. M. Expanding the genetic engineering toolbox for the metabolically flexible acetogen Eubacterium limosum.J. Ind. Microbiol. Biotechnol. 49, kuac019 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Biggs, B. W. et al. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res. 48, 5169–5182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bredeweg, E. L. et al. A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol. Biofuels 10, 2 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wong, L., Holdridge, B., Engel, J. & Xu, P. Genetic tools for streamlined and accelerated pathway engineering in Yarrowia lipolytica. Methods Mol. Biol. 1927, 155–177 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. DeLorenzo, D. M., Rottinghaus, A. G., Henson, W. R. & Moon, T. S. Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth. Biol. 7, 727–738 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Fischer, J. E. & Glieder, A. Current advances in engineering tools for Pichia pastoris. Curr. Opin. Biotechnol. 59, 175–181 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Joseph, R. C., Kim, N. M. & Sandoval, N. R. Recent developments of the synthetic biology toolkit for Clostridium. Front. Microbiol. 9, 154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022). This work extensively engineered P. putida and deployed the strain in a two-step process, involving a chemical-oxidation step and bacterial biotransformation step, that converts key components of consumer plastic wastes (for example, high-density polyethylene, polystyrene and PET) into valuable building blocks for biological production, paving the way for future plastic recycling applications.

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Zhao, Y. et al. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microb. Biotechnol. 14, 2497–2513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, Y. et al. Reprogramming Escherichia coli metabolism for bioplastics synthesis from waste cooking oil. ACS Synth. Biol. 10, 1966–1979 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, G. et al. Crage enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat. Microbiol. 4, 2498–2510 (2019).

    Article  PubMed  Google Scholar 

  133. Fernandez-Bunster, G. & Pavez, P. Novel production methods of polyhydroxyalkanoates and their innovative uses in biomedicine and industry. Molecules 27, 8351 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Suzuki, Y. et al. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. Bioresour. Technol. 337, 125489 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Alvarez-Gonzalez, G. & Dixon, N. Genetically encoded biosensors for lignocellulose valorization. Biotechnol. Biofuels 12, 246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Machado, L. F. & Dixon, N. Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks. Chem. Commun. 52, 11402–11405 (2016).

    Article  CAS  Google Scholar 

  137. Siedler, S. et al. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth. Biol. 6, 1860–1869 (2017).

    Article  PubMed  Google Scholar 

  138. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gutmann, F. et al. CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate. Biotechnol. Biofuels 14, 41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Camara, E., Lenitz, I. & Nygard, Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Sci. Rep. 10, 14605 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  141. DeLorenzo, D. M., Diao, J., Carr, R., Hu, Y. & Moon, T. S. An improved CRISPR interference tool to engineer Rhodococcus opacus. ACS Synth. Biol. 10, 786–798 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Henson, W. R. et al. Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus. Metab. Eng. 49, 69–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Lam, F. H. et al. Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks.Sci. Adv. 7, eabf7613 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pham, H. L. et al. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat. Commun. 8, 411 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  145. d’Oelsnitz, S. et al. Using fungible biosensors to evolve improved alkaloid biosyntheses. Nat. Chem. Biol. 18, 981–989 (2022). This work presented a generalizable approach to developing new biosensors from flexible transcription factor templates and applied them to the development of genetic circuit-based enzyme screening processes, which allowed the discovery of variants with novel substrate preferences.

    Article  PubMed  Google Scholar 

  146. Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Cravens, A., Jamil, O. K., Kong, D., Sockolosky, J. T. & Smolke, C. D. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nat. Commun. 12, 1579 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vu, V. et al. Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium. Bioresour. Technol. 343, 126092 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Peng, X. et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat. Microbiol. 6, 499–511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, J. et al. Construction of a fungal consortium for effective degradation of rice straw lignin and potential application in bio-pulping. Bioresour. Technol. 344, 126168 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Peng, Z., Mao, X., Zhang, J., Du, G. & Chen, J. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb. Cell Fact. 18, 84 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Qin, L. et al. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ. Sci. Pollut. Res. Int. 23, 8379–8387 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Al-Wasify, R. S., Ali, M. N. & Hamed, S. R. Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Sci. Technol. 76, 3094–3100 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Sindhu, R. et al. Valorization of food and kitchen waste: an integrated strategy adopted for the production of poly-3-hydroxybutyrate, bioethanol, pectinase and 2, 3-butanediol. Bioresour. Technol. 310, 123515 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Wong, C. Y. et al. Valorization of exo-microbial fermented coconut endosperm waste by black soldier fly larvae for simultaneous biodiesel and protein productions. Environ. Res. 185, 109458 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Li, C. et al. Syntrophic acetate-oxidizing microbial consortia enriched from full-scale mesophilic food waste anaerobic digesters showing high biodiversity and functional redundancy. mSystems 7, e0033922 (2022).

    Article  PubMed  Google Scholar 

  157. Wanapaisan, P. et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J. Hazard. Mater. 342, 561–570 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Yang, J. et al. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil. Environ. Sci. Pollut. Res. Int. 25, 17645–17653 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Chen, J. et al. Biochemical pathways and associated microbial process of di-2-ethyl hexyl phthalate (dehp) enhanced degradation by the immobilization technique in sequencing batch reactor. Environ. Technol. 43, 2899–2908 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, L. et al. Degradation of phenylurea herbicides by a novel bacterial consortium containing synergistically catabolic species and functionally complementary hydrolases. J. Agric. Food Chem. 66, 12479–12489 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  161. Zhai, Y. et al. Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-deoxynivalenol as the main intermediate. Front. Microbiol. 10, 2172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yin, T. et al. A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization. J. Hazard. Mater. 401, 123269 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Cha, S. et al. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals. Metab. Eng. 64, 146–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Li, C., Zhu, X. & Angelidaki, I. Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia. Bioresour. Technol. 314, 123739 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Lehtinen, T., Virtanen, H., Santala, S. & Santala, V. Production of alkanes from CO2 by engineered bacteria. Biotechnol. Biofuels 11, 228 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Park, H., Patel, A., Hunt, K. A., Henson, M. A. & Carlson, R. P. Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis. NPJ Biofilms Microbiomes 6, 59 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Senne de Oliveira Lino, F., Bajic, D., Vila, J. C. C., Sanchez, A. & Sommer, M. O. A. Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun. 12, 1498 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 14, 821–829 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Li, X. et al. Design of stable and self-regulated microbial consortia for chemical synthesis. Nat. Commun. 13, 1554 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kang, C. W. et al. Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production. Nat. Commun. 13, 6506 (2022). This work demonstrated the design of a smart bioproduction microbial consortia consisting of Vibrio sp. Dhg and E. coli. E. coli was engineered with a ‘population guider’ circuit, which regulates antibiotic degradation to implement a synthetic cooperation relationship, leading to optimal growth balance and improved bio-production titres in the engineered consortia compared to simple consortia consisting of natural strains.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  171. Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, aag0804 (2017).

    Article  PubMed  Google Scholar 

  172. Fei, Q. et al. Biological valorization of natural gas for the production of lactic acid: techno-economic analysis and life cycle assessment. Biochem. Eng. J. 158, 107500 (2020).

    Article  CAS  Google Scholar 

  173. Rajendran, N. & Han, J. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. Bioresour. Technol. 348, 126796 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Cui, S. et al. Multilayer genetic circuits for dynamic regulation of metabolic pathways. ACS Synth. Biol. 10, 1587–1597 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Moser, F. et al. Genetic circuit performance under conditions relevant for industrial bioreactors. ACS Synth. Biol. 1, 555–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pantoja Angles, A., Valle-Pérez, A. U., Hauser, C. & Mahfouz, M. M. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front. Bioeng. Biotechnol. 10, 830200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Arnolds, K. L. et al. Biotechnology for secure biocontainment designs in an emerging bioeconomy. Curr. Opin. Biotechnol. 71, 25–31 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Bing, R. G. et al. Fermentative conversion of unpretreated plant biomass: a thermophilic threshold for indigenous microbial growth. Bioresour. Technol. 367, 128275 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. de Morais, M. B., Barbosa-Neto, A. G., Willadino, L., Ulisses, C. & Calsa Junior, T. Salt stress induces increase in starch accumulation in duckweed (Lemna aequinoctialis, Lemnaceae): biochemical and physiological aspects. J. Plant Growth Regul. 38, 683–700 (2019).

    Article  Google Scholar 

  182. Aikawa, S. et al. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol. Biofuels 7, 88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Selvarajoo, K. The need for integrated systems biology approaches for biotechnological applications. Biotechnol. Notes 2, 39–43 (2021).

    Article  CAS  Google Scholar 

  184. Calero, P. & Nikel, P. I. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb. Biotechnol. 12, 98–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. El-Sharoud, W. M., Zalma, S. A., Rios-Solis, L. & Ledesma-Amaro, R. Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox. Biotechnol. Notes 4, 14–19 (2023).

    Article  CAS  Google Scholar 

  186. Lu, J. et al. Model-based dynamic engineering of Escherichia coli for n-acetylglucosamine overproduction. Biotechnol. Notes 3, 15–24 (2022).

    Article  CAS  Google Scholar 

  187. Kadisch, M., Willrodt, C., Hillen, M., Bühler, B. & Schmid, A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol. J. 12, 1600170 (2017).

    Article  Google Scholar 

  188. Caspeta, L. et al. Altered sterol composition renders yeast thermotolerant. Science 346, 75–78 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  189. Wang, W. et al. Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnol. Biofuels 12, 288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kuroda, K. et al. Critical roles of the pentose phosphate pathway and GLN3 in isobutanol-specific tolerance in yeast. Cell Syst. 9, 534–547.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Deatherage, D. E. et al. Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res. 46, 9236–9250 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Xiao, Y., Bowen, C. H., Liu, D. & Zhang, F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat. Chem. Biol. 12, 339–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Krink, N., Löchner, A. C., Cooper, H., Beisel, C. L. & Di Ventura, B. Synthetic biology landscape and community in Germany. Biotechnol. Notes 3, 8–14 (2022).

    Article  Google Scholar 

  194. Donati, S. et al. Synthetic biology in Europe: current community landscape and future perspectives. Biotechnol. Notes 3, 54–61 (2022).

    Article  Google Scholar 

  195. Trisrivirat, D., Tinikul, R. & Chaiyen, P. Synthetic microbes and biocatalyst designs in Thailand. Biotechnol. Notes 4, 28–40 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NUS Medicine Synthetic Biology Translational Research Program (NUHSRO/2020/077/MSC/02/SB), the Synthetic Biology R&D Program of the National Research Foundation of Singapore (SBP-P2, SBP-P7, SBP-P9) and the Industry Alignment Fund-Industry Collaboration Project (I1701E0011).

Author information

Authors and Affiliations

Authors

Contributions

N.A., H.L.P., B.R., L.H., J.L.F. and M.W.C. conceptualized the manuscript. N.A., B.R., H.L.P., M.S., Y.L. and G.S.H. researched and wrote the article. N.A., H.L.P., B.R., L.H., J.L.F. and M.W.C. reviewed and edited the manuscript. M.W.C. obtained funding and supervised the study.

Corresponding author

Correspondence to Matthew Wook Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Rodrigo Ledesma-Amaro, Diethard Mattanovich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global Biofoundry Alliance: https://www.biofoundries.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, N., Pham, H.L., Ranjan, B. et al. Microbial engineering strategies to utilize waste feedstock for sustainable bioproduction. Nat Rev Bioeng 2, 155–174 (2024). https://doi.org/10.1038/s44222-023-00129-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00129-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research