Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial therapies at the interface of synthetic biology and nanomedicine

Abstract

Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.

Key points

  • Synthetic biology has brought about the rapid development of live bacteria-based therapeutics in the last two decades.

  • However, using live bacteria presents challenges for the translation of proof-of-concept work into the clinic.

  • The integration of synthetic biology and nanomedicine could overcome some of the challenges faced by bacterial therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges in delivery of bacterial therapy.
Fig. 2: Comparison between nanomedicine and bacteria-based therapy.
Fig. 3: Interface between nanomedicine and bacterial therapy.

Similar content being viewed by others

References

  1. Nandagopal, N. & Elowitz, M. B. Synthetic biology: integrated gene circuits. Science 333, 1244–1248 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J., Li, Y. & Nie, G. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 6, 766–783 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Segers, V. F. M. & Lee, R. T. Stem-cell therapy for cardiac disease. Nature 451, 937–942 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Maxmen, A. Living therapeutics: scientists genetically modify bacteria to deliver drugs. Nat. Med. 23, 5–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome 7, 31 (2019).

    Article  Google Scholar 

  8. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. McNerney, M. P., Doiron, K. E., Ng, T. L., Chang, T. Z. & Silver, P. A. Theranostic cells: emerging clinical applications of synthetic biology. Nat. Rev. Genet. 22, 730–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cubillos-Ruiz, A. et al. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 20, 941–960 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Ho, C. L. et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2, 27–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018). This article presents a live bacterial therapeutic engineered to metabolize phenylalanine for the treatment of phenylketonuria, currently in phase III clinical trials.

    Article  CAS  PubMed  Google Scholar 

  14. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, eaau7975 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sieow, B. F. L., Wun, K. S., Yong, W. P., Hwang, I. Y. & Chang, M. W. Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer Res. 7, 447–464 (2021).

    Article  CAS  Google Scholar 

  17. Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017). This paper demonstrates the use of engineered bacteria as a diagnostic device for inflammation by detecting and recording exposure to a relevant biomarker in the gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daeffler, K. N. M. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13, 923 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mao, N., Cubillos-Ruiz, A., Cameron, D. E. & Collins, J. J. Probiotic strains detect and suppress cholera in mice. Sci. Transl. Med. 10, eaao2586 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, Y. et al. Immunomimetic designer cells protect mice from MRSA infection. Cell 174, 259–270.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teixeira, A. P. & Fussenegger, M. Synthetic biology-inspired therapies for metabolic diseases. Curr. Opin. Biotechnol. 47, 59–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith, K. A. Louis Pasteur, the father of immunology? Front. Immunol. 3, 68 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lindberg, A. A. The history of live bacterial vaccines. Dev. Biol. Stand. 84, 211–219 (1995).

    CAS  PubMed  Google Scholar 

  26. Behr, M. A. BCG — different strains, different vaccines? Lancet Infect. Dis. 2, 86–92 (2002).

    Article  PubMed  Google Scholar 

  27. Luca, S. & Mihaescu, T. History of BCG vaccine. Maedica 8, 53–58 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Germanier, R. & Füer, E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J. Infect. Dis. 131, 553–558 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. Germanier, R. & Fürer, E. Characteristics of the attenuated oral vaccine strain ‘S. typhi’ Ty 21a. Dev. Biol. Stand. 53, 3–7 (1983).

    CAS  PubMed  Google Scholar 

  30. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. 1976. J. Urol. 167, 891–893 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Pettenati, C. & Ingersoll, M. A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 15, 615–625 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Cabrera, A., Lepage, J. E., Sullivan, K. M. & Seed, S. M. Vaxchora: a single-dose oral cholera vaccine. Ann. Pharmacother. 51, 584–589 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Mosley, J. F. II, Smith, L. L., Brantley, P., Locke, D. & Como, M. Vaxchora: the first FDA-approved cholera vaccination in the United States. P T 42, 638–640 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Khanna, S. et al. Efficacy and safety of RBX2660 in PUNCH CD3, a phase III, randomized, double-blind, placebo-controlled trial with a Bayesian primary analysis for the prevention of recurrent Clostridioides difficile infection. Drugs 82, 1527–1538 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. No authors listed. FDA okays first human stool therapy.Nat. Biotechnol. 41, 5 (2023).

    Article  Google Scholar 

  36. Feuerstadt, P., Allegretti, J. R. & Khanna, S. Practical use of rebyota for the prevention of recurrent Clostridioides difficile infection. Am. J. Gastroenterol. 118, 1303–1306 (2023).

    Article  PubMed  Google Scholar 

  37. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Khanna, S. et al. SER-109: an oral investigational microbiome therapeutic for patients with recurrent infection (rCDI). Antibiotics 11, 1234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sims, M. D. et al. Safety and tolerability of SER-109 as an investigational microbiome therapeutic in adults with recurrent Clostridioides difficile infection: a phase 3, open.-label, single-arm trial. JAMA Netw. Open 6, e2255758 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yu, Y. et al. Bacteria-driven bio-therapy: from fundamental studies to clinical trials. Nano Today 48, 101731 (2023).

    Article  CAS  Google Scholar 

  41. Huang, X. et al. Bacteria-based cancer immunotherapy. Adv. Sci. 8, 2003572 (2021).

    Article  CAS  Google Scholar 

  42. Van Amersfoort, E. S., Van Berkel, T. J. C. & Kuiper, J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin. Microbiol. Rev. 16, 379–414 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Strebhardt, K. & Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Dykhuizen, D. Species numbers in bacteria. Proc. Calif. Acad. Sci. 56, 62–71 (2005).

    PubMed  PubMed Central  Google Scholar 

  45. Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274, 17406–17409 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Yoshimura, A. et al. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1–5 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Green, E. R. & Mecsas, J. Bacterial secretion systems: an overview. Microbiol. Spectr. 4, 10.1128/microbiolspec.VMBF-0012-2015 (2016).

  51. Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, J. H. et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9, eaak9537 (2017).

    Article  PubMed  Google Scholar 

  53. Reeves, A. Z. et al. Engineering Escherichia coli into a protein delivery system for mammalian cells. ACS Synth. Biol. 4, 644–654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Theys, J. et al. Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 8, 294–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Yoon, S. H., Kim, S. K. & Kim, J. F. Secretory production of recombinant proteins in Escherichia coli. Recent. Pat. Biotechnol. 4, 23–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Z. Y. et al. Construction of leaky strains and extracellular production of exogenous proteins in recombinant Escherichia coli. Microb. Biotechnol. 7, 360–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chien, T., Doshi, A. & Danino, T. Advances in bacterial cancer therapies using synthetic biology. Curr. Opin. Syst. Biol. 5, 1–8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tschirhart, T. et al. Synthetic biology tools for the fast-growing marine bacterium. ACS Synth. Biol. 8, 2069–2079 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 2, 214 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Banno, S., Nishida, K., Arazoe, T., Mitsunobu, H. & Kondo, A. Deaminase-mediated multiplex genome editing in Escherichia coli. Nat. Microbiol. 3, 423–429 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Vo, P. L. H. et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baranov, M. V., Kumar, M., Sacanna, S., Thutupalli, S. & van den Bogaart, G. Modulation of immune responses by particle size and shape. Front. Immunol. 11, 607945 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang, X. R. & Chen, G. Q. Morphology engineering of bacteria for bio-production. Biotechnol. Adv. 34, 435–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Volke, D. C. & Nikel, P. I. Getting bacteria in shape: synthetic morphology approaches for the design of efficient microbial cell factories. Adv. Biosyst. 2, 1800111 (2018).

    Article  Google Scholar 

  68. Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577–5591 (2012).

    Article  Google Scholar 

  69. Xiao, K. et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32, 3435–3446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jucker, B. A., Harms, H. & Zehnder, A. J. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J. Bacteriol. 178, 5472–5479 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mout, R., Moyano, D. F., Rana, S. & Rotello, V. M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 41, 2539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goldberg, M. & Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov. 2, 289–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Cao, Y. et al. Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends Pharmacol. Sci. 42, 957–972 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Iweala, O. I. & Nagler, C. R. Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol. Rev. 213, 82–100 (2006).

    Article  PubMed  Google Scholar 

  81. Charteris, W. P., Kelly, P. M. & Collins, J. K. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 84, 759–768 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Conway, P. L., Gorbach, S. L. & Goldin, B. R. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy. Sci. 70, 1–12 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Francino, M. P. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front. Microbiol. 6, 1543 (2015).

    CAS  PubMed  Google Scholar 

  85. Russell, B. J. et al. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 185, 3263–3277.e15 (2022). This proof-of-principle study describes the use of native bacteria as a chassis for long-term colonization and transgene delivery in the gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Luo, H. et al. Chemical reaction-mediated covalent localization of bacteria. Nat. Commun. 13, 7808 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cronin, M. et al. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol. Ther. 18, 1397–1407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra84 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 362, 1605–1617 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Bhowmik, A., Khan, R. & Ghosh, M. K. Blood brain barrier: a challenge for effectual therapy of brain tumors. Biomed. Res. Int. 2015, 320941 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chen, Y. E. et al. Engineered skin bacteria induce antitumor T cell responses against melanoma. Science 380, 203–210 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Schmidt, C. Out of your skin. Nat. Biotechnol. 38, 392–397 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Geyer, S., Jacobs, M. & Hsu, N. J. Immunity against bacterial infection of the central nervous system: an astrocyte perspective. Front. Mol. Neurosci. 12, 57 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Harimoto, T. et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat. Biotechnol. 40, 1259–1269 (2022). This paper demonstrates a dynamic modulation of a bacterial surface driven by synthetic biology to improve the safety and efficacy of systemically delivered therapeutic bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cao, Z., Cheng, S., Wang, X., Pang, Y. & Liu, J. Camouflaging bacteria by wrapping with cell membranes. Nat. Commun. 10, 3452 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  96. Cao, Z., Wang, X., Pang, Y., Cheng, S. & Liu, J. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat. Commun. 10, 5783 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Razavi, S., Janfaza, S., Tasnim, N., Gibson, D. L. & Hoorfar, M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Nanoscale Adv. 3, 2699–2709 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, J. et al. Biomaterials coating for on-demand bacteria delivery: selective release, adhesion, and detachment. Nano Today 41, 101291 (2021).

    Article  CAS  Google Scholar 

  99. Li, W. et al. Nanodrug-loaded Bifidobacterium bifidum conjugated with anti-death receptor antibody for tumor-targeted photodynamic and sonodynamic synergistic therapy. Acta Biomater. 146, 341–356 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Geng, Z. et al. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat. Commun. 12, 6584 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bereta, M. et al. Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies. Vaccine 25, 4183–4192 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Massa, P. E., Paniccia, A., Monegal, A., de Marco, A. & Rescigno, M. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood 122, 705–714 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Piñero-Lambea, C. et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4, 463–473 (2015).

    Article  PubMed  Google Scholar 

  104. Park, S. H. et al. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated Salmonella-mediated cancer therapy. Theranostics 6, 1672–1682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, J. et al. Decorating bacteria with triple immune nanoactivators generates tumor-resident living immunotherapeutics. Angew. Chem. Int. Ed. Engl. 61, e202202409 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, Y. et al. Dressing bacteria with a hybrid immunoactive nanosurface to elicit dual anticancer and antiviral immunity. Adv. Mater. 35, e2210949 (2023).

    Article  PubMed  Google Scholar 

  107. Guo, H. et al. Integrating bacteria with a ternary combination of photosensitizers for monochromatic irradiation-mediated photoacoustic imaging-guided synergistic photothermal therapy. ACS Nano 17, 5059–5071 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Blakemore, R. Magnetotactic bacteria. Science 190, 377–379 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Alapan, Y. et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3, eaar4423 (2018).

    Article  PubMed  Google Scholar 

  110. Park, B. W., Zhuang, J., Yasa, O. & Sitti, M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11, 8910–8923 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Fan, J. X. et al. Engineered bacterial bioreactor for tumor therapy via Fenton-like reaction with localized H2O2 generation. Adv. Mater. 31, e1808278 (2019).

    Article  PubMed  Google Scholar 

  112. Akolpoglu, M. B. et al. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. Sci. Adv. 8, eabo6163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gwisai, T. et al. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci. Robot. 7, eabo0665 (2022). This study demonstrates a hybrid control strategy using innate taxis of bacteria and externally driven magnetic torque to improve tumour accumulation of bacteria-based microrobots.

    Article  CAS  PubMed  Google Scholar 

  114. Zheng, D. W. et al. Optically-controlled bacterial metabolite for cancer therapy. Nat. Commun. 9, 1680 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  115. Chen, Q. W. et al. Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism. Angew. Chem. Int. Ed. Engl. 59, 21562–21570 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Luo, Y. et al. Nanoparticles conjugated with bacteria targeting tumors for precision imaging and therapy. Biochem. Biophys. Res. Commun. 514, 1147–1153 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Chen, F. et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials 214, 119226 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Chu, B. et al. Trojan nanobacteria system for photothermal programmable destruction of deep tumor tissues. Angew. Chem. Int. Ed. Engl. 61, e202208422 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, W. et al. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat. Biomed. Eng. 6, 44–53 (2022). This paper develops a biohybrid system that couples antigen-adsorbing nanoparticles with motile bacteria to transport tumour antigens released from radiotherapy to active dendritic cells for improved antitumour effects.

    Article  CAS  PubMed  Google Scholar 

  120. Ma, X. et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nat. Commun. 14, 1606 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Akin, D. et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol. 2, 441–449 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  ADS  CAS  Google Scholar 

  123. Sedighi, M. et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 8, 3167–3181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Duong, M. T. Q., Qin, Y., You, S. H. & Min, J. J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp. Mol. Med. 51, 1–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Ye, Z. et al. Nanotechnology-employed bacteria-based delivery strategy for enhanced anticancer therapy. Int. J. Nanomed. 16, 8069–8086 (2021).

    Article  CAS  Google Scholar 

  126. Luo, C. H., Huang, C. T., Su, C. H. & Yeh, C. S. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 16, 3493–3499 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Moreno, V. M. et al. Bacteria as nanoparticles carrier for enhancing penetration in a tumoral matrix model. Adv. Mater. Interfaces 7, 1901942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lovley, D. R., Stolz, J. F., Nord, G. L. Jr & Phillips, E. J. P. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254 (1987).

    Article  ADS  CAS  Google Scholar 

  130. Kang, S. H., Bozhilov, K. N., Myung, N. V., Mulchandani, A. & Chen, W. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew. Chem. Int. Ed. Engl. 47, 5186–5189 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Park, T. J., Lee, S. Y., Heo, N. S. & Seo, T. S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew. Chem. Int. Ed. Engl. 49, 7019–7024 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Moskowitz, B. M. Biomineralization of magnetic minerals. Rev. Geophys. 33, 123 (1995).

    Article  ADS  Google Scholar 

  133. Ye, P. et al. In situ generation of gold nanoparticles on bacteria‐derived magnetosomes for imaging‐guided starving/chemodynamic/photothermal synergistic therapy against cancer. Adv. Funct. Mater. 32, 2110063 (2022).

    Article  CAS  Google Scholar 

  134. Gerritzen, M. J. H., Martens, D. E., Wijffels, R. H., van der Pol, L. & Stork, M. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv. 35, 565–574 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Kaparakis-Liaskos, M. & Ferrero, R. L. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15, 375–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Kim, O. Y. et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun. 8, 626 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  137. Wang, X. et al. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis. Sci. Adv. 9, eade5079 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gujrati, V. et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 8, 1525–1537 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Boer, P. A. J., de Boer, P. A. J., Crossley, R. E. & Rothfield, L. I. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56, 641–649 (1989).

    Article  PubMed  Google Scholar 

  140. MacDiarmid, J. A. et al. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol. 27, 643–651 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Rampley, C. P. N. et al. Development of simcells as a novel chassis for functional biosensors. Sci. Rep. 7, 7261 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  142. Lim, B. et al. Reprogramming synthetic cells for targeted cancer therapy. ACS Synth. Biol. 11, 1349–1360 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schroeder, A. et al. Remotely activated protein-producing nanoparticles. Nano Lett. 12, 2685–2689 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Krinsky, N. et al. Synthetic cells synthesize therapeutic proteins inside tumors. Adv. Healthc. Mater. 7, e1701163 (2018).

    Article  PubMed  Google Scholar 

  145. Barderas, R. & Benito-Peña, E. The 2018 Nobel prize in chemistry: phage display of peptides and antibodies. Anal. Bioanal. Chem. 411, 2475–2479 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Gordillo Altamirano, F. L. & Barr, J. J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 32, e00066-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Bao, Q. et al. Phage-based vaccines. Adv. Drug Deliv. Rev. 145, 40–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Karimi, M. et al. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev. 106, 45–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sunderland, K. S., Yang, M. & Mao, C. Phage-enabled nanomedicine: from probes to therapeutics in precision medicine. Angew. Chem. Int. Ed. Engl. 56, 1964–1992 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Suwan, K. et al. Next-generation of targeted AAVP vectors for systemic transgene delivery against cancer. Proc. Natl. Acad. Sci. USA 116, 18571–18577 (2019). This study develops a phage-based vector for gene therapy by engineering capsid proteins and genomic sequences for tailored application in mammalian cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kreitz, J. et al. Programmable protein delivery with a bacterial contractile injection system. Nature 616, 357–364 (2023). This article reports an engineering strategy to modify target organisms of a bacterial CIS for protein delivery in human and other animal cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Qi, T., McGrath, K., Ranganathan, R., Dotti, G. & Cao, Y. Cellular kinetics: a clinical and computational review of CAR-T cell pharmacology. Adv. Drug Deliv. Rev. 188, 114421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Min, J. J., Nguyen, V. H., Kim, H. J., Hong, Y. & Choy, H. E. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat. Protoc. 3, 629–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Auletta, S. et al. PET radiopharmaceuticals for specific bacteria imaging: a systematic review. J. Clin. Med. Res. 8, 197 (2019).

    CAS  Google Scholar 

  158. Danino, T., Lo, J., Prindle, A., Hasty, J. & Bhatia, S. N. In vivo gene expression dynamics of tumor-targeted bacteria. ACS Synth. Biol. 1, 465–470 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Croucher, N. J. & Thomson, N. R. Studying bacterial transcriptomes using RNA-seq. Curr. Opin. Microbiol. 13, 619–624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schauer, O. et al. Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display. Sci. Rep. 8, 9801 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  161. Lauga, E. The Fluid Dynamics of Cell Motility (Cambridge University Press, 2020).

  162. Zhuang, J., Wright Carlsen, R. & Sitti, M. pH-taxis of biohybrid microsystems. Sci. Rep. 5, 11403 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  163. Chien, T. et al. Enhancing the tropism of bacteria via genetically programmed biosensors. Nat. Biomed. Eng. 6, 94–104 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  165. Hauert, S. & Bhatia, S. N. Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends Biotechnol. 32, 448–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, T. et al. Probiotic Escherichia coli Nissle 1917 propelled micro-robot with pH sensitivity for hypoxia targeted intestinal tumor therapy. Colloids Surf. B Biointerfaces 225, 113277 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Yue, Y. et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nat. Biomed. Eng. 6, 898–909 (2022). This study demonstrates in situ production of OMVs by engineered bacteria in the gut to develop an oral cancer vaccine and therapeutics.

    Article  CAS  PubMed  Google Scholar 

  168. Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83 (2015).

    Article  PubMed  Google Scholar 

  170. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  171. Trieu, V. et al. First-in-human phase I study of bacterial RNA interference therapeutic CEQ508 in patients with familial adenomatous polyposis (FAP). Ann. Oncol. 28, v174 (2017).

    Article  Google Scholar 

  172. Fijan, S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int. J. Environ. Res. Public. Health 11, 4745–4767 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. 105, 487–511 (1893).

    Article  Google Scholar 

  174. Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 3, 1–48 (1910).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. King, I. et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum. Gene Ther. 13, 1225–1233 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Adolfsen, K. J. et al. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat. Commun. 12, 6215 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  178. Cunningham, C. & Nemunaitis, J. A phase I trial of genetically modified Salmonella Typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum. Gene Ther. 12, 1594–1596 (2001).

    CAS  PubMed  Google Scholar 

  179. Puurunen, M. K. et al. Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study. Nat. Metab. 3, 1125–1132 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Shi, L., Yu, B., Cai, C. H. & Huang, J. D. Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella Typhimurium safely shrink tumors in mice. AMB Express 6, 56 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Chabloz, A. et al. Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun. Biol. 3, 342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gurbatri, C. R. et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 12, eaax0876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Harimoto, T. et al. Rapid screening of engineered microbial therapies in a 3D multicellular model. Proc. Natl. Acad. Sci. USA 116, 9002–9007 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chowdhury, S. et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Xiang, S., Fruehauf, J. & Li, C. J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 24, 697–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Kong, W., Brovold, M., Koeneman, B. A., Clark-Curtiss, J. & Curtiss, R. 3rd Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc. Natl. Acad. Sci. USA 109, 19414–19419 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  188. van Pijkeren, J. P. et al. A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy. Hum. Gene Ther. 21, 405–416 (2010).

    Article  PubMed  Google Scholar 

  189. Pilgrim, S. et al. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther. 10, 2036–2045 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Krick, E. L. et al. Evaluation of clostridium novyi-NT spores in dogs with naturally occurring tumors. Am. J. Vet. Res. 73, 112–118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Staedtke, V., Roberts, N. J., Bai, R. Y. & Zhou, S. Clostridium novyi-NT in cancer therapy. Genes Dis. 3, 144–152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Janku, F. et al. Intratumoral injection of clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clin. Cancer Res. 27, 96–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Janku, F. et al. 383 First-in-man clinical trial of intratumoral injection of clostridium Novyi-NT spores in combination with pembrolizumab in patients with treatment-refractory advanced solid tumors. J. Immunother. Cancer 8, A408 (2020).

    Google Scholar 

  194. Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella Typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article  PubMed  Google Scholar 

  195. Clairmont, C. et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella Typhimurium. J. Infect. Dis. 181, 1996–2002 (2000).

    Article  CAS  PubMed  Google Scholar 

  196. Luo, X. et al. Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol. Res. 12, 501–508 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Wawrzyniak, J. A. et al. A purine nucleotide biosynthesis enzyme guanosine monophosphate reductase is a suppressor of melanoma invasion. Cell Rep. 5, 493–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Frahm, M. et al. Efficiency of conditionally attenuated Salmonella enterica serovar Typhimurium in bacterium-mediated tumor therapy. mBio 6, e00254-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Freitag, N. E., Rong, L. & Portnoy, D. A. Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect. Immun. 61, 2537–2544 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gunn, G. R. et al. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J. Immunol. 167, 6471–6479 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Unterholzner, S. J., Poppenberger, B. & Rozhon, W. Toxin-antitoxin systems: biology, identification, and application. Mob. Genet. Elem. 3, e26219 (2013).

    Article  Google Scholar 

  202. Kang, C. W. et al. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metab. Eng. 48, 121–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Blazejewski, T., Ho, H. I. & Wang, H. H. Synthetic sequence entanglement augments stability and containment of genetic information in cells. Science 365, 595–598 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  204. Thiele, E. H., Arison, R. N. & Boxer, G. E. Oncolysis by Clostridia. III. Effects of Clostridia and chemotherapeutic agents on rodent tumors. Cancer Res. 24, 222–233 (1964).

    CAS  PubMed  Google Scholar 

  205. Fox, M. E. et al. Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3, 173–178 (1996).

    CAS  PubMed  Google Scholar 

  206. Nguyen, D. H., Chong, A., Hong, Y. & Min, J. J. Bioengineering of bacteria for cancer immunotherapy. Nat. Commun. 14, 3553 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhang, Y. et al. The role of bacteria and its derived biomaterials in cancer radiotherapy. Acta Pharm. Sin. B. https://doi.org/10.1016/j.apsb.2022.10.013 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Mengesha, A. et al. Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella. Cancer Biol. Ther. 5, 1120–1128 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Moser, F. et al. Genetic circuit performance under conditions relevant for industrial bioreactors. ACS Synth. Biol. 1, 555–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lam, K. N. et al. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 37, 109930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Gao, J., Hussain, R. M. & Weng, C. Y. Voretigene neparvovec in retinal diseases: a review of the current clinical evidence. Clin. Ophthalmol. 14, 3855–3869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Danino lab members, A. Sivan and R. L. Vincent, for their insightful discussions. T.D. discloses support for the publication of this work from NIH (R01CA249160). T.H. discloses support for the publication of this work from NIH (F99CA253756).

Author information

Authors and Affiliations

Authors

Contributions

J.H. conducted the initial literature search and outlined the general manuscript format. J.H., S.D., J.I. and T.H. wrote the initial manuscript draft, with contributions from K.L. and T.D. All authors reviewed and critically revised all versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tal Danino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Jinhui Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, J., Ding, S., Im, J. et al. Bacterial therapies at the interface of synthetic biology and nanomedicine. Nat Rev Bioeng 2, 120–135 (2024). https://doi.org/10.1038/s44222-023-00119-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00119-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research