Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Genetically targeted chemical assembly

Abstract

Cell type-specific interfaces within living animals will be invaluable for achieving communication with identifiable cells over the long term, enabling applications across many scientific and medical fields. However, biological tissues exhibit complex and dynamic organization properties that pose serious challenges for chronic cell-specific interfacing. A new technology, combining chemistry and molecular biology, has emerged to address this challenge: genetically targeted chemical assembly (GTCA), in which specific cells are genetically programmed (even in wild-type or non-transgenic animals, including mammals) to chemically construct non-biological structures. Here, we discuss recent progress in genetically targeted construction of materials and outline opportunities that may expand the GTCA toolbox, including specific chemical processes involving novel monomers, catalysts and reaction regimes both de cellula (from the cell) and ad cellula (towards the cell); different GTCA-compatible reaction conditions with a focus on light-based patterning; and potential applications of GTCA in research and clinical settings.

Key points

  • Genetically targeted chemical assembly (GTCA) uses cell-specific genetic information to guide the assembly of functional materials in situ.

  • The GTCA toolbox can be expanded through specific chemical processes involving novel monomers, catalysts and reaction conditions or regimes.

  • GTCA allows both building structures from the targeted cell membrane (de cellula) and an alternative approach (ad cellula) for cell-specific attachment of partially synthesized materials.

  • Different GTCA-compatible reaction conditions can be imposed through modulation of light, pH, heat and other signals.

  • The broad GTCA concept can be applied for both fundamental research and the treatment of diseases in the central and peripheral nervous systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetically targeted chemical assembly of polymers de cellula on living cellular membranes: localization and polymerization schemata for pyrrole derivatives.
Fig. 2: Genetically enabled ad cellula conjugation of pre-synthesized materials on living cell membranes.
Fig. 3: Genetically targeted reaction conditions.
Fig. 4: Applications from central to peripheral nervous systems.

Similar content being viewed by others

References

  1. Acarón Ledesma, H. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019).

    Article  Google Scholar 

  2. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  Google Scholar 

  3. Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article  Google Scholar 

  4. Zhang, A., Lee, J.-H. & Lieber, C. M. Nanowire-enabled bioelectronics. Nano Today 38, 101135 (2021).

    Article  Google Scholar 

  5. Luan, L. et al. Recent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalability. Neuron 108, 302–321 (2020).

    Article  Google Scholar 

  6. Zhang, M., Tang, Z., Liu, X. & Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 3, 191–200 (2020).

    Article  Google Scholar 

  7. Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    Article  Google Scholar 

  8. Woods, G. A., Rommelfanger, N. J. & Hong, G. Bioinspired materials for in vivo bioelectronic neural interfaces. Matter 3, 1087–1113 (2020).

    Article  Google Scholar 

  9. Berggren, M., Głowacki, E. D., Simon, D. T., Stavrinidou, E. & Tybrandt, K. In vivo organic bioelectronics for neuromodulation. Chem. Rev. 122, 4826–4846 (2022).

    Article  Google Scholar 

  10. Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023).

    Article  Google Scholar 

  11. Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021). This review article on synthetic biology describes biopolymer synthesis from natural building blocks.

    Article  Google Scholar 

  12. Burgos-Morales, O. et al. Synthetic biology as driver for the biologization of materials sciences. Mater. Today Bio 11, 100115 (2021).

    Article  Google Scholar 

  13. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article  Google Scholar 

  14. Ouyang, L., Shaw, C. L., Kuo, C.-C., Griffin, A. L. & Martin, D. C. In vivo polymerization of poly(3,4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task. J. Neural Eng. 11, 026005 (2014). This article reports the first work on in vivo polymerization (not genetically targeted).

    Article  Google Scholar 

  15. Liu, J. et al. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science 367, 1372–1376 (2020). This article is the first demonstration of GTCA that uses cell-specific genetic information to guide neurons to deposit conductive or insulating polymers in situ.

    Article  Google Scholar 

  16. Zhang, A. et al. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. Sci. Adv. 9, eadi1870 (2023).This article reports the second-generation GTCA that allows highly localized membrane expression.

    Article  Google Scholar 

  17. Dai, Y. et al. Oxidative polymerization in living cells. J. Am. Chem. Soc. 143, 10709–10717 (2021).

    Article  Google Scholar 

  18. Pieszka, M. et al. Controlled supramolecular assembly inside living cells by sequential multistaged chemical reactions. J. Am. Chem. Soc. 142, 15780–15789 (2020).

    Article  Google Scholar 

  19. Zhang, Y. et al. Controlled intracellular polymerization for cancer treatment. JACS Au 2, 579–589 (2022).

    Article  Google Scholar 

  20. Guimard, N. K., Gomez, N. & Schmidt, C. E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2007).

    Article  Google Scholar 

  21. Tabba, H. D. & Smith, K. M. Anodic oxidation potentials of substituted pyrroles: derivation and analysis of substituent partial potentials. J. Org. Chem. 49, 1870–1875 (1984).

    Article  Google Scholar 

  22. Berlin, A., Pagani, G. A., Sannicolò, F., Schiavon, G. & Zotti, G. Monomer tailoring to control the redox potentials of conductive polyheterocycles. Polymer 32, 1841–1842 (1991).

    Article  Google Scholar 

  23. Tan, Y. & Ghandi, K. Kinetics and mechanism of pyrrole chemical polymerization. Synth. Met. 175, 183–191 (2013).

    Article  Google Scholar 

  24. Gaupp, C. L. et al. Poly(3,4-ethylenedioxypyrrole): organic electrochemistry of a highly stable electrochromic polymer. Macromolecules 33, 1132–1133 (2000).

    Article  Google Scholar 

  25. Sönmez, G., Schottland, P., Zong, K. & Reynolds, J. R. Highly transmissive and conductive poly[(3,4-alkylenedioxy)pyrrole-2,5-diyl] (PXDOP) films prepared by air or transition metal catalyzed chemical oxidation. J. Mater. Chem. 11, 289–294 (2001).

    Article  Google Scholar 

  26. Kuwabata, S., Ito, S. & Yoneyama, H. Copolymerization of pyrrole and thiophene by electrochemical oxidation and electrochemical behavior of the resulting copolymers. J. Electrochem. Soc. 135, 1691 (1988).

    Article  Google Scholar 

  27. Tewari, A. et al. Soybean peroxidase catalyzed enzymatic synthesis of pyrrole/EDOT copolymers. Macromol. Chem. Phys. 211, 1610–1617 (2010).

    Article  Google Scholar 

  28. John, R. & Wallace, G. Doping–dedoping of polypyrrole: a study using current-measuring and resistance-measuring techniques. J. Electroanal. Chem. 354, 145–160 (1993).

    Article  Google Scholar 

  29. Cruz-Silva, R. et al. Biocatalytic synthesis of polypyrrole powder, colloids, and films using horseradish peroxidase. J. Colloid Interface Sci. 328, 263–269 (2008).

    Article  Google Scholar 

  30. Song, H.-K., Lee, E. J. & Oh, S. M. Electrochromism of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) incorporated into conducting polymer as a dopant. Chem. Mat. 17, 2232–2233 (2005).

    Article  Google Scholar 

  31. Yoo, J. E. et al. Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. J. Mater. Chem. 17, 1268–1275 (2007).

    Article  Google Scholar 

  32. Bayer, C. L., Trenchard, I. J. & Peppas, N. A. Analyzing polyaniline-poly(2-acrylamido-2-methylpropane sulfonic acid) biocompatibility with 3T3 fibroblasts. J. Biomater. Sci. Polym. Ed. 21, 623–634 (2010).

    Article  Google Scholar 

  33. Zhang, W., Yang, F. K., Pan, Z., Zhang, J. & Zhao, B. Bio-inspired dopamine functionalization of polypyrrole for improved adhesion and conductivity. Macromol. Rapid Commun. 35, 350–354 (2014).

    Article  Google Scholar 

  34. Xie, C. et al. Electroresponsive and cell-affinitive polydopamine/polypyrrole composite microcapsules with a dual-function of on-demand drug delivery and cell stimulation for electrical therapy. NPG Asia Mater. 9, e358 (2017).

    Article  Google Scholar 

  35. Chalmers, E., Lee, H., Zhu, C. & Liu, X. Increasing the conductivity and adhesion of polypyrrole hydrogels with electropolymerized polydopamine. Chem. Mat. 32, 234–244 (2020).

    Article  Google Scholar 

  36. Bedard, K. & Krause, K.-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Article  Google Scholar 

  37. Ma, M. W. et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol. Neurodegener. 12, 1–28 (2017).

    Article  Google Scholar 

  38. Suh, S. W. et al. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann. Neurol. 64, 654–663 (2008).

    Article  Google Scholar 

  39. Bankar, S. B., Bule, M. V., Singhal, R. S. & Ananthanarayan, L. Glucose oxidase — an overview. Biotechnol. Adv. 27, 489–501 (2009).

    Article  Google Scholar 

  40. Mayer, A. M. & Staples, R. C. Laccase: new functions for an old enzyme. Phytochemistry 60, 551–565 (2002).

    Article  Google Scholar 

  41. Kausaite, A., Ramanaviciene, A. & Ramanavicius, A. Polyaniline synthesis catalysed by glucose oxidase. Polymer 50, 1846–1851 (2009).

    Article  Google Scholar 

  42. Karamyshev, A. V., Shleev, S. V., Koroleva, O. V., Yaropolov, A. I. & Sakharov, I. Y. Laccase-catalyzed synthesis of conducting polyaniline. Enzyme Microb. Technol. 33, 556–564 (2003).

    Article  Google Scholar 

  43. Ramanavicius, A., Kausaite, A., Ramanaviciene, A., Acaite, J. & Malinauskas, A. Redox enzyme — glucose oxidase — initiated synthesis of polypyrrole. Synth. Met. 156, 409–413 (2006).

    Article  Google Scholar 

  44. Song, H.-K. & Palmore, G. T. R. Conductive polypyrrole via enzyme catalysis. J. Phys. Chem. B 109, 19278–19287 (2005).

    Article  Google Scholar 

  45. Porto de Souza Vandenberghe, L. et al. in Biomass, Biofuels, Biochemicals (eds Singh, S. P. et al.) 11–30 (Elsevier, 2020).

  46. Prescher, J. A. & Bertozzi, C. R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005). This review article discusses bioorthogonal chemistry, a tool for genetically targeted conjugation of pre-synthesized materials.

    Article  Google Scholar 

  47. Chyan, W. & Raines, R. T. Enzyme-activated fluorogenic probes for live-cell and in vivo imaging. ACS Chem. Biol. 13, 1810–1823 (2018).

    Article  Google Scholar 

  48. Yang, Y., Lee, P. & Sternson, S. M. Cell type-specific pharmacology of NMDA receptors using masked MK801. eLife 4, e10206 (2015).

    Article  Google Scholar 

  49. Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  Google Scholar 

  50. Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    Article  Google Scholar 

  51. Cioce, A. et al. Cell-specific bioorthogonal tagging of glycoproteins. Nat. Commun. 13, 6237 (2022).

    Article  Google Scholar 

  52. Schumann, B. et al. Bump-and-hole engineering identifies specific substrates of glycosyltransferases in living cells. Mol. Cell 78, 824–834.e15 (2020).

    Article  Google Scholar 

  53. Fan, X. et al. Cell-type-specific labeling and profiling of glycans in living mice. Nat. Chem. Biol. 18, 625–633 (2022).

    Article  Google Scholar 

  54. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    Article  Google Scholar 

  55. Tian, L. et al. Selective esterase–ester pair for targeting small molecules with cellular specificity. Proc. Natl Acad. Sci. USA 109, 4756–4761 (2012).

    Article  Google Scholar 

  56. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012). This article introduces the SpyTag–SpyCatcher system, which is the basis of genetically targeted conjugation using modular protein–peptide interaction systems.

    Article  Google Scholar 

  57. Grenier, V., Daws, B. R., Liu, P. & Miller, E. W. Spying on neuronal membrane potential with genetically targetable voltage indicators. J. Am. Chem. Soc. 141, 1349–1358 (2019).

    Article  Google Scholar 

  58. Bedbrook, C. N. et al. Genetically encoded Spy peptide fusion system to detect plasma membrane-localized proteins in vivo. Chem. Biol. 22, 1108–1121 (2015).

    Article  Google Scholar 

  59. Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).

    Article  Google Scholar 

  60. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  Google Scholar 

  61. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  Google Scholar 

  62. Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

    Article  Google Scholar 

  63. Wojtovich, A. P. & Foster, T. H. Optogenetic control of ROS production. Redox Biol. 2, 368–376 (2014).

    Article  Google Scholar 

  64. Balena, A., Bianco, M., Pisanello, F. & De Vittorio, M. Recent advances on high-speed and holographic two-photon direct laser writing. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202211773 (2023).

    Article  Google Scholar 

  65. Bulina, M. E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006).

    Article  Google Scholar 

  66. Zhou, Z., Song, J., Nie, L. & Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 45, 6597–6626 (2016).

    Article  Google Scholar 

  67. Rodríguez-Pulido, A. et al. Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. Chem. Commun. 52, 8405–8408 (2016).

    Article  Google Scholar 

  68. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011). This article describes miniSOG, the genetically encoded photosensitizer that could enable 3D in vivo photolithography.

    Article  Google Scholar 

  69. Trewin, A. J. et al. Light-induced oxidant production by fluorescent proteins. Free Radic. Biol. Med. 128, 157–164 (2018).

    Article  Google Scholar 

  70. Westberg, M., Holmegaard, L., Pimenta, F. M., Etzerodt, M. & Ogilby, P. R. Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. J. Am. Chem. Soc. 137, 1632–1642 (2015).

    Article  Google Scholar 

  71. Westberg, M., Bregnhøj, M., Etzerodt, M. & Ogilby, P. R. No photon wasted: an efficient and selective singlet oxygen photosensitizing protein. J. Phys. Chem. B 121, 9366–9371 (2017).

    Article  Google Scholar 

  72. Makhijani, K. et al. Precision optogenetic tool for selective single-and multiple-cell ablation in a live animal model system. Cell Chem. Biol. 24, 110–119 (2017).

    Article  Google Scholar 

  73. He, J. et al. A genetically targetable near-infrared photosensitizer. Nat. Methods 13, 263–268 (2016).

    Article  Google Scholar 

  74. Zhang, A., Kadur, C. S., Ramakrishnan, C., Bao, Z. & Deisseroth, K. Genetically-encoded photosensitizers enable light-controlled polymerization on living neuronal membranes. Preprint at bioRxiv https://doi.org/10.1101/2022.12.27.521977 (2022).

    Article  Google Scholar 

  75. Sessler, C. D. et al. Optogenetic polymerization and assembly of electrically functional polymers for modulation of single-neuron excitability. Sci. Adv. 8, eade1136 (2022).

    Article  Google Scholar 

  76. del Campo, A. & Greiner, C. SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 17, R81 (2007).

    Article  Google Scholar 

  77. Deisseroth, K. From microbial membrane proteins to the mysteries of emotion. Cell 184, 5279–5285 (2021).

    Article  Google Scholar 

  78. Ferenczi, E. A. et al. Optogenetic approaches addressing extracellular modulation of neural excitability. Sci. Rep. 6, 23947 (2016). This article describes use of proton-pumping rhodopsins to control juxtamembranous pH-dependent channel function; this approach could enable light-controlled pH-regulated GTCA.

    Article  Google Scholar 

  79. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2012).

    Article  Google Scholar 

  80. Pruckmayr, G. & Wu, T. K. Polymerization of tetrahydrofuran by proton acids. Macromolecules 11, 662–668 (1978).

    Article  Google Scholar 

  81. Deisseroth, K. & Hegemann, P. The form and function of channelrhodopsin. Science 357, eaan5544 (2017).

    Article  Google Scholar 

  82. Hatchett, D. W., Josowicz, M. & Janata, J. Acid doping of polyaniline: spectroscopic and electrochemical studies. J. Phys. Chem. B 103, 10992–10998 (1999).

    Article  Google Scholar 

  83. Li, X. et al. Nanotransducers for wireless neuromodulation. Matter 4, 1484–1510 (2021). This review summarizes nanoparticle transducers that convert external fields into different forms of energy, which could enable temperature-regulated GTCA.

    Article  Google Scholar 

  84. Liu, Y., Yi, Z., Yao, Y., Guo, B. & Liu, X. Noninvasive manipulation of ion channels for neuromodulation and theranostics. Acc. Mater. Res. 3, 247–258 (2022).

    Article  Google Scholar 

  85. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    Article  Google Scholar 

  86. Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    Article  Google Scholar 

  87. Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    Article  Google Scholar 

  88. Rastogi, S. K. et al. Remote nongenetic optical modulation of neuronal activity using fuzzy graphene. Proc. Natl Acad. Sci. USA 117, 13339–13349 (2020).

    Article  Google Scholar 

  89. Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).

    Article  MathSciNet  Google Scholar 

  90. Jiang, Y. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2, 508–521 (2018).

    Article  Google Scholar 

  91. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010).

    Article  Google Scholar 

  92. Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    Article  Google Scholar 

  93. Sebesta, C. et al. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. Nat. Mater. 21, 951–958 (2022).

    Article  Google Scholar 

  94. Marino, A. et al. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9, 7678–7689 (2015).

    Article  Google Scholar 

  95. Kim, T. et al. Deep brain stimulation by blood–brain-barrier-crossing piezoelectric nanoparticles generating current and nitric oxide under focused ultrasound. Nat. Biomed. Eng. 7, 149–163 (2023).

    Article  Google Scholar 

  96. Jin, W., Wang, R. & Huang, X. Horseradish peroxidase-catalyzed oxidative polymerization of aniline in bicontinuous microemulsion stabilized by AOT/SDS. J. Mol. Liq. 302, 112529 (2020).

    Article  Google Scholar 

  97. Yamada, M., Nagasaki, S. C., Ozawa, T. & Imayoshi, I. Light-mediated control of gene expression in mammalian cells. Neurosci. Res. 152, 66–77 (2020). This review introduces optically targeted gene expression approaches that could control downstream GTCA-relevant genes.

    Article  Google Scholar 

  98. Yamada, M., Suzuki, Y., Nagasaki, S. C., Okuno, H. & Imayoshi, I. Light control of the Tet gene expression system in mammalian cells. Cell Rep. 25, 487–500.e6 (2018).

    Article  Google Scholar 

  99. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  Google Scholar 

  100. Yamada, M., Nagasaki, S. C., Suzuki, Y., Hirano, Y. & Imayoshi, I. Optimization of light-inducible Gal4/UAS gene expression system in mammalian cells. iScience 23, 101506 (2020).

    Article  Google Scholar 

  101. Uda, Y. et al. Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. Proc. Natl Acad. Sci. USA 114, 11962–11967 (2017).

    Article  Google Scholar 

  102. Jin, X. & Riedel-Kruse, I. H. Biofilm lithography enables high-resolution cell patterning via optogenetic adhesin expression. Proc. Natl Acad. Sci. USA 115, 3698–3703 (2018).

    Article  Google Scholar 

  103. Zhao, F. et al. Light-induced patterning of electroactive bacterial biofilms. ACS Synth. Biol. 11, 2327–2338 (2022).

    Article  Google Scholar 

  104. Lovett-Barron, M. et al. Ancestral circuits for the coordinated modulation of brain state. Cell 171, 1411–1423.e17 (2017).

    Article  Google Scholar 

  105. Lovett-Barron, M. et al. Multiple convergent hypothalamus–brainstem circuits drive defensive behavior. Nat. Neurosci. 23, 959–967 (2020).

    Article  Google Scholar 

  106. Yokogawa, T., Hannan, M. C. & Burgess, H. A. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. J. Neurosci. 32, 15205–15215 (2012).

    Article  Google Scholar 

  107. Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent network models of sequence generation and memory. Neuron 90, 128–142 (2016).

    Article  Google Scholar 

  108. Perich, M. G. et al. Inferring brain-wide interactions using data-constrained recurrent neural network models. Preprint at bioRxiv, https://doi.org/10.1101/2020.12.18.423348 (2020).

  109. Andalman, A. S. et al. Neuronal dynamics regulating brain and behavioral state transitions. Cell 177, 970–985.e20 (2019).

    Article  Google Scholar 

  110. Deisseroth, K. Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309–317 (2014).

    Article  Google Scholar 

  111. Chettih, S. N. & Harvey, C. D. Single-neuron perturbations reveal feature-specific competition in V1. Nature 567, 334–340 (2019).

    Article  Google Scholar 

  112. Kishi, K. E. et al. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 185, 672–689.e23 (2022).

    Article  Google Scholar 

  113. Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).

    Article  Google Scholar 

  114. Li, T. L. et al. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids. Biomaterials. 290, 121825 (2022).

    Article  Google Scholar 

  115. Ward, P. J. & English, A. W. Optical stimulation and electrophysiological analysis of regenerating peripheral axons. Bio Protoc. 9, e3281 (2019).

    Article  Google Scholar 

  116. Yalcin, I. et al. The sciatic nerve cuffing model of neuropathic pain in mice. J. Vis. Exp. https://doi.org/10.3791/51608 (2014).

    Article  Google Scholar 

  117. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  Google Scholar 

  118. Tatti, R., Haley, M. S., Swanson, O. K., Tselha, T. & Maffei, A. Neurophysiology and regulation of the balance between excitation and inhibition in neocortical circuits. Biol. Psychiatry 81, 821–831 (2017).

    Article  Google Scholar 

  119. Selimbeyoglu, A. et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl Med. 9, eaah6733 (2017).

    Article  Google Scholar 

  120. Peñagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235–246 (2011).

    Article  Google Scholar 

  121. Berndt, A. et al. Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity. Proc. Natl Acad. Sci. USA 113, 822–829 (2016).

    Article  Google Scholar 

  122. Pernelle, G., Nicola, W. & Clopath, C. Gap junction plasticity as a mechanism to regulate network-wide oscillations. PLoS Comput. Biol. 14, e1006025 (2018).

    Article  Google Scholar 

  123. Redolfi Riva, E. & Micera, S. Progress and challenges of implantable neural interfaces based on nature-derived materials. Bioelectron. Med. 7, 6 (2021).

    Article  Google Scholar 

  124. Shim, J.-S., Rogers, J. A. & Kang, S.-K. Physically transient electronic materials and devices. Mater. Sci. Eng. R. Rep. 145, 100624 (2021).

    Article  Google Scholar 

  125. Irimia-Vladu, M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43, 588–610 (2014).

    Article  Google Scholar 

  126. Qin, Y. et al. Harnessing oxidative microenvironment for in vivo synthesis of subcellular conductive polymer microesicles enhances nerve reconstruction. Nano Lett. 22, 3825–3831 (2022).

    Article  Google Scholar 

  127. Patel, S. R. & Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol. 37, 1007–1012 (2019).

    Article  Google Scholar 

  128. Williams, D. C. et al. Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Rep. 5, 553–563 (2013).

    Article  Google Scholar 

  129. Qi, Y. B., Garren, E. J., Shu, X., Tsien, R. Y. & Jin, Y. Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc. Natl Acad. Sci. USA 109, 7499–7504 (2012).

    Article  Google Scholar 

  130. Ng, J. et al. Genetically targeted 3D visualisation of Drosophila neurons under electron microscopy and X-ray microscopy using miniSOG. Sci. Rep. 6, 38863 (2016).

    Article  Google Scholar 

  131. Liang, P., Kolodieznyi, D., Creeger, Y., Ballou, B. & Bruchez, M. P. Subcellular singlet oxygen and cell death: location matters. Front. Chem. 8, 1045 (2020).

    Article  Google Scholar 

  132. Xie, W. et al. Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity. eLife 9, e51845 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The Keck Foundation supported development of light-initiated polymerization and applications in living neural networks. The National Science Foundation Future Manufacturing Program grant (award no. 2037164) supported chemical method development for genetically targeted chemical assembly (GTCA). Both grants were awarded to K.D. and Z.B. based on the original GTCA concept and next-generation methods described previously15. A.Z. acknowledges support from the American Heart Association (AHA) (award no. 23POST1018301). K.Y.L. acknowledges support from the Stanford ChEM-H Chemistry/Biology Interface Predoctoral Training Program (NIH 5T32GM120007) and Bio-X Bowes Fellowship. Z.B. is a Chan Zuckerberg Biohub San Francisco investigator.

Author information

Authors and Affiliations

Authors

Contributions

A.Z., Z.B. and K.D. wrote the manuscript with edits from all authors. Z.B. and K.D. supervised all aspects of the work. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhenan Bao or Karl Deisseroth.

Ethics declarations

Competing interests

All techniques and protocols are freely available to the academic community, and the authors provide free training in genetically targeted chemical assembly (GTCA) methods at Stanford in workshops that can be accessed for registration online (https://web.stanford.edu/group/dlab/optogenetics/oil.html). Z.B. and K.D. are co-inventors of the GTCA concept used here, in intellectual property filed and owned by Stanford University.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Itaru Imayoshi, Brian Timko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Jiang, Y., Loh, K.Y. et al. Genetically targeted chemical assembly. Nat Rev Bioeng 2, 82–94 (2024). https://doi.org/10.1038/s44222-023-00110-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00110-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research