Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioengineering translational models of lymphoid tissues

Abstract

Bioengineered models of human tissues have the potential to revolutionize human health by providing a translational platform to investigate disease mechanisms and develop new therapies. Recreating human immune biology is challenging owing to its unique complexity and diversity at the molecular, cellular, tissue and system levels. Advances in immunotherapy have contributed to the emergence of immuno-engineering as a new discipline that applies engineering principles to modulate and emulate the immune system. In synergy with single-cell sequencing, spatial omics, systems immunology, organoids and organ-on-a-chip technologies, these are helping to decipher and recreate human immune components and responses in vitro at a high level of biological fidelity. In this Review, we contextualize the needs for predictive non-clinical models of human immune responses and we overview recent advances in bioengineering models of lymphoid tissues and immune-competent non-lymphoid tissues. We focus on models of the thymus, lymph nodes and intestinal mucosa as examples requiring different degrees of biological and technical complexity. We highlight the experimental demonstrations of their translational value and propose avenues to boost their impact as non-clinical models for immunotherapies.

Key points

  • Preclinical studies for immunotherapies do not translate well into clinical outcomes, in part because animals or simplistic in vitro models do not sufficiently recreate complex human immune responses.

  • High-resolution spatial omics and single-cell immune repertoire sequencing can fill important knowledge gaps and guide engineering principles of the human immune system, in particular deciphering and recreating T cell and B cell diversity.

  • Recent advances in bioengineered models of lymphoid tissues, such as the thymus and lymphoid follicles, and mimicry of resident immunity in various tissue models demonstrate the possibility to recreate innate and adaptive immune responses in vitro and in vivo.

  • The translational value of models of the immune system for applications in drug research and development could be enhanced by incorporating benchmarks and readouts relevant to preclinical and clinical contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune cell types, blood and lymphoid tissues.
Fig. 2: Building bioengineered lymphoid models that recapitulate primary tissue structure and function.
Fig. 3: Connecting bioengineered models of lymphoid tissues and intestinal immunity.

Similar content being viewed by others

References

  1. Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 323, 844–853 (2020).

    Article  Google Scholar 

  2. Hackam, D. G. & Redelmeier, D. A. Translation of research evidence from animals to humans. JAMA 296, 1731–1732 (2006).

    Article  Google Scholar 

  3. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114–118 (2014).

    Google Scholar 

  4. Pound, P. & Ritskes-Hoitinga, M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J. Transl. Med. 16, 304 (2018).

    Article  Google Scholar 

  5. Leenaars, C. H. C. et al. Animal to human translation: a systematic scoping review of reported concordance rates. J. Transl. Med. 17, 223 (2019).

    Article  Google Scholar 

  6. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).

    Article  Google Scholar 

  7. Yu, H. et al. A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood 129, 959–969 (2017).

    Article  Google Scholar 

  8. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  Google Scholar 

  9. Perrin, S. Preclinical research: make mouse studies work. Nature 507, 423–425 (2014).

    Article  Google Scholar 

  10. Wang, X. et al. Application of immunocompetent microphysiological systems in drug development: current perspective and recommendations. ALTEX 40, 314–336 (2022).

    Google Scholar 

  11. Rusyn, I. et al. Microphysiological systems evaluation: experience of TEX-VAL tissue chip testing consortium. Toxicol. Sci. 188, 143–152 (2022).

    Article  Google Scholar 

  12. Baran, S. W. et al. Perspectives on the evaluation and adoption of complex in vitro models in drug development: workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). ALTEX 39, 297–314 (2022).

    Google Scholar 

  13. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article  Google Scholar 

  14. Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

    Article  Google Scholar 

  15. Vulto, P. & Joore, J. Adoption of organ-on-chip platforms by the pharmaceutical industry. Nat. Rev. Drug Discov. 20, 961–962 (2021).

    Article  Google Scholar 

  16. Hammel, J. H., Cook, S. R., Belanger, M. C., Munson, J. M. & Pompano, R. R. Modeling immunity in vitro: slices, chips, and engineered tissues. Annu. Rev. Biomed. Eng. 23, 461–491 (2021).

    Article  Google Scholar 

  17. Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. 20, 279–293 (2020).

    Article  Google Scholar 

  18. Moysidou, C. M., Barberio, C. & Owens, R. M. Advances in engineering human tissue models. Front. Bioeng. Biotechnol. 8, 620962 (2020).

    Article  Google Scholar 

  19. Najibi, A. J. & Mooney, D. J. Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv. Drug Deliv. Rev. 161-162, 42–62 (2020).

    Article  Google Scholar 

  20. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  Google Scholar 

  21. Smerchansky, M. E. & Kinney, M. A. Engineering multicellular niches for pluripotent stem cell-derived immunotherapy. Curr. Opin. Biomed. Eng. 16, 19–26 (2020).

    Article  Google Scholar 

  22. Ye, W., Luo, C., Li, C., Huang, J. & Liu, F. Organoids to study immune functions, immunological diseases and immunotherapy. Cancer Lett. 477, 31–40 (2020).

    Article  Google Scholar 

  23. Kim, S., Shah, S. B., Graney, P. L. & Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater. 4, 355–378 (2019).

    Article  Google Scholar 

  24. Park, S. E., Georgescu, A. & Huh, D. Organoids-on-a-chip. Science 364, 960–965 (2019).

    Article  Google Scholar 

  25. Polini, A. et al. Towards the development of human immune-system-on-a-chip platforms. Drug Discov. Today 24, 517–525 (2019).

    Article  Google Scholar 

  26. Coontz, R. Science’s Top 10 Breakthroughs of 2013 https://www.science.org/content/article/sciences-top-10-breakthroughs-2013 (2013).

  27. Senior, M. Fresh from the biotech pipeline: fewer approvals, but biologics gain share. Nat. Biotechnol. 41, 174–182 (2023).

    Google Scholar 

  28. Naran, K., Nundalall, T., Chetty, S. & Barth, S. Principles of immunotherapy: implications for treatment strategies in cancer and infectious diseases. Front. Microbiol. 9, 3158 (2018).

    Article  Google Scholar 

  29. Esfandiari, A., Cassidy, S. & Webster, R. M. Bispecific antibodies in oncology. Nat. Rev. Drug Discov. 21, 411–412 (2022).

    Article  Google Scholar 

  30. Fares, C. M., Van Allen, E. M., Drake, C. G., Allison, J. P. & Hu-Lieskovan, S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book 39, 147–164 (2019).

    Article  Google Scholar 

  31. Sullivan, R. J. & Weber, J. S. Immune-related toxicities of checkpoint inhibitors: mechanisms and mitigation strategies. Nat. Rev. Drug Discov. 21, 495–508 (2022).

    Article  Google Scholar 

  32. Ochoa de Olza, M. et al. Early-drug development in the era of immuno-oncology: are we ready to face the challenges? Ann. Oncol. 29, 1727–1740 (2018).

    Article  Google Scholar 

  33. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  Google Scholar 

  34. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article  Google Scholar 

  35. Miller, J. The function of the thymus and its impact on modern medicine. Science 369, eaba2429 (2020).

    Article  Google Scholar 

  36. Thierry Mora, A. M. W. How many different clonotypes do immune repertoires contain? Curr. Opin. Syst. Biol. 18, 104–110 (2019).

    Article  Google Scholar 

  37. Szabo, P. A. et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54, 797–814.e6 (2021).

    Article  Google Scholar 

  38. Farber, D. L. Tissues, not blood, are where immune cells function. Nature 593, 506–509 (2021).

    Article  Google Scholar 

  39. Chapman, K., Pullen, N., Graham, M. & Ragan, I. Preclinical safety testing of monoclonal antibodies: the significance of species relevance. Nat. Rev. Drug Discov. 6, 120–126 (2007).

    Article  Google Scholar 

  40. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  Google Scholar 

  41. Medetgul-Ernar, K. & Davis, M. M. Standing on the shoulders of mice. Immunity 55, 1343–1353 (2022).

    Article  Google Scholar 

  42. Watkins, D. I., Burton, D. R., Kallas, E. G., Moore, J. P. & Koff, W. C. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat. Med. 14, 617–621 (2008).

    Article  Google Scholar 

  43. Estes, J. D., Wong, S. W. & Brenchley, J. M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 18, 390–404 (2018).

    Article  Google Scholar 

  44. Bjornson-Hooper, Z. B. et al. A comprehensive atlas of immunological differences between humans, mice, and non-human primates. Front. Immunol. 13, 867015 (2022).

    Article  Google Scholar 

  45. No Authors Listed.Can super-antibody drugs be tamed? Nature 440, 855–856 (2006).

    Article  Google Scholar 

  46. Horvath, C. J. & Milton, M. N. The TeGenero incident and the Duff Report conclusions: a series of unfortunate events or an avoidable event? Toxicol. Pathol. 37, 372–383 (2009).

    Article  Google Scholar 

  47. Gogishvili, T. et al. Rapid regulatory T-cell response prevents cytokine storm in CD28 superagonist treated mice. PLoS One 4, e4643 (2009).

    Article  Google Scholar 

  48. Eastwood, D. et al. Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br. J. Pharmacol. 161, 512–526 (2010).

    Article  Google Scholar 

  49. Panitch, H. S., Hirsch, R. L., Schindler, J. & Johnson, K. P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    Article  Google Scholar 

  50. Panitch, H. S., Hirsch, R. L., Haley, A. S. & Johnson, K. P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1, 893–895 (1987).

    Article  Google Scholar 

  51. Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).

    Article  Google Scholar 

  52. Lythe, G., Callard, R. E., Hoare, R. L. & Molina-Paris, C. How many TCR clonotypes does a body maintain. J. Theor. Biol. 389, 214–224 (2016).

    Article  MATH  Google Scholar 

  53. Karnes, J. H. et al. Applications of immunopharmacogenomics: predicting, preventing, and understanding immune-mediated adverse drug reactions. Annu. Rev. Pharmacol. Toxicol. 59, 463–486 (2019).

    Article  Google Scholar 

  54. Chessman, D. et al. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 28, 822–832 (2008).

    Article  Google Scholar 

  55. Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

    Article  Google Scholar 

  56. Massoni-Badosa, R. et al. An atlas of cells in the human tonsil. Preprint at bioRxiv https://doi.org/10.1101/2022.06.24.497299 (2022).

    Article  Google Scholar 

  57. Hurley, K. et al. Reconstructed single-cell fate trajectories define lineage plasticity windows during differentiation of human PSC-derived distal lung progenitors. Cell Stem Cell 26, 593–608.e8 (2020).

    Article  Google Scholar 

  58. Michaels, Y. S. et al. DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells. Sci. Adv. 8, eabn5522 (2022).

    Article  Google Scholar 

  59. Veres, A. et al. Charting cellular identity during human in vitro beta-cell differentiation. Nature 569, 368–373 (2019).

    Article  Google Scholar 

  60. Zhang, X. et al. Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell 30, 378–395.e8 (2023).

    Article  Google Scholar 

  61. Wagar, L. E. et al. Modeling human adaptive immune responses with tonsil organoids. Nat. Med. 27, 125–135 (2021).

    Article  Google Scholar 

  62. Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014).

    Article  Google Scholar 

  63. Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    Article  Google Scholar 

  64. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    Article  Google Scholar 

  65. Dominguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  Google Scholar 

  66. Axelrod, M. L. et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022).

    Article  Google Scholar 

  67. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  Google Scholar 

  68. Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).

    Article  Google Scholar 

  69. Qiu, P. Embracing the dropouts in single-cell RNA-seq analysis. Nat. Commun. 11, 1169 (2020).

    Article  Google Scholar 

  70. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  Google Scholar 

  71. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  Google Scholar 

  72. Rao, A., Barkley, D., Franca, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  Google Scholar 

  73. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with codex multiplexed imaging. Cell 174, 968–981.e15 (2018).

    Article  Google Scholar 

  74. Suo, C. et al. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

    Article  Google Scholar 

  75. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).

    Article  Google Scholar 

  76. Uzquiano, A. et al. Proper acquisition of cell class identity in organoids allows definition of fate specification programs of the human cerebral cortex. Cell 185, 3770–3788.e27 (2022).

    Article  Google Scholar 

  77. Liu, Z. et al. Detecting tumor antigen-specific T cells via interaction-dependent fucosyl-biotinylation. Cell 183, 1117–1133.e19 (2020).

    Article  Google Scholar 

  78. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).

    Article  Google Scholar 

  79. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  Google Scholar 

  80. Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  Google Scholar 

  81. He, Z. et al. Lineage recording in human cerebral organoids. Nat. Methods 19, 90–99 (2022).

    Article  MathSciNet  Google Scholar 

  82. Sudmeier, L. J. et al. Distinct phenotypic states and spatial distribution of CD8+ T cell clonotypes in human brain metastases. Cell Rep. Med. 3, 100620 (2022).

    Article  Google Scholar 

  83. Gordon, J. & Manley, N. R. Mechanisms of thymus organogenesis and morphogenesis. Development 138, 3865–3878 (2011).

    Article  Google Scholar 

  84. Blackburn, C. C. & Manley, N. R. Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 4, 278–289 (2004).

    Article  Google Scholar 

  85. Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).

    Article  Google Scholar 

  86. van Ewijk, W. et al. Thymic microenvironments, 3-D versus 2-D? Semin. Immunol. 11, 57–64 (1999).

    Article  Google Scholar 

  87. Garcia-Leon, M. J., Fuentes, P., de la Pompa, J. L. & Toribio, M. L. Dynamic regulation of NOTCH1 activation and Notch ligand expression in human thymus development. Development 145, dev16597 (2018).

    Google Scholar 

  88. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    Article  Google Scholar 

  89. Bayramoglu, Z., Ozturk, M., Caliskan, E., Ayyildiz, H. & Adaletli, I. Normative values of thymus in healthy children; stiffness by shear wave elastography. Diagn. Interv. Radiol. 26, 147–152 (2020).

    Article  Google Scholar 

  90. Silva, C. S., Reis, R. L., Martins, A. & Neves, N. M. Recapitulation of thymic function by tissue engineering strategies. Adv. Healthc. Mater. 10, e2100773 (2021).

    Article  Google Scholar 

  91. Hun, M. et al. Native thymic extracellular matrix improves in vivo thymic organoid T cell output, and drives in vitro thymic epithelial cell differentiation. Biomaterials 118, 1–15 (2017).

    Article  Google Scholar 

  92. Asnaghi, M. A. et al. Thymus extracellular matrix-derived scaffolds support graft-resident thymopoiesis and long-term in vitro culture of adult thymic epithelial cells. Adv. Funct. Mater. 31, 2010747 (2021).

    Article  Google Scholar 

  93. Mohtashami, M. & Zuniga-Pflucker, J. C. Three-dimensional architecture of the thymus is required to maintain delta-like expression necessary for inducing T cell development. J. Immunol. 176, 730–734 (2006).

    Article  Google Scholar 

  94. Anderson, G. & Jenkinson, E. J. Investigating central tolerance with reaggregate thymus organ cultures. Methods Mol. Biol. 380, 185–196 (2007).

    Article  Google Scholar 

  95. Pinto, S. et al. An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression. J. Immunol. 190, 1085–1093 (2013).

    Article  Google Scholar 

  96. Tajima, A. et al. Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel. Clin. Immunol. 160, 82–89 (2015).

    Article  Google Scholar 

  97. Chung, B. et al. Engineering the human thymic microenvironment to support thymopoiesis in vivo. Stem Cell 32, 2386–2396 (2014).

    Article  Google Scholar 

  98. Seet, C. S. et al. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat. Methods 14, 521–530 (2017).

    Article  Google Scholar 

  99. Fan, Y. et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol. Ther. 23, 1262–1277 (2015).

    Article  Google Scholar 

  100. Tajima, A., Pradhan, I., Geng, X., Trucco, M. & Fan, Y. Construction of thymus organoids from decellularized thymus scaffolds. Methods Mol. Biol. 1576, 33–42 (2019).

    Article  Google Scholar 

  101. Campinoti, S. et al. Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds. Nat. Commun. 11, 6372 (2020).

    Article  Google Scholar 

  102. Zeleniak, A. et al. De novo construction of T cell compartment in humanized mice engrafted with iPSC-derived thymus organoids. Nat. Methods 19, 1306–1319 (2022).

    Article  Google Scholar 

  103. Sharma, H. & Moroni, L. Recent advancements in regenerative approaches for thymus rejuvenation. Adv. Sci. 8, 2100543 (2021).

    Article  Google Scholar 

  104. Parent, A. V. et al. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13, 219–229 (2013).

    Article  Google Scholar 

  105. Sun, X. et al. Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13, 230–236 (2013).

    Article  Google Scholar 

  106. Okabe, M., Ito, S., Nishio, N., Tanaka, Y. & Isobe, K. Thymic epithelial cells induced from pluripotent stem cells by a three-dimensional spheroid culture system regenerates functional T cells in nude mice. Cell. Reprogram. 17, 368–375 (2015).

    Article  Google Scholar 

  107. Montel-Hagen, A. et al. Organoid-induced differentiation of conventional t cells from human pluripotent stem cells. Cell Stem Cell 24, 376–389.e8 (2019).

    Article  Google Scholar 

  108. Chhatta, A. R. et al. De novo generation of a functional human thymus from induced pluripotent stem cells. J. Allergy Clin. Immunol. 144, 1416–1419.e7 (2019).

    Article  Google Scholar 

  109. Ramos, S. A. et al. Generation of functional human thymic cells from induced pluripotent stem cells. J. Allergy Clin. Immunol. 149, 767–781.e6 (2021).

    Article  Google Scholar 

  110. Ramos, S. A. et al. Generation of functional thymic organoids from human pluripotent stem cells. Stem Cell Rep. 18, 829–840 (2023).

    Article  Google Scholar 

  111. Duke-Cohan, J. S. et al. Pre-T cell receptor self-MHC sampling restricts thymocyte dedifferentiation. Nature 613, 565–574 (2023).

    Article  Google Scholar 

  112. Amadori, A. et al. Genetic control of the CD4/CD8 T-cell ratio in humans. Nat. Med. 1, 1279–1283 (1995).

    Article  Google Scholar 

  113. Garrido-Rodriguez, V. et al. Immunological features beyond CD4/CD8 ratio values in older individuals. Aging 13, 13443–13459 (2021).

    Article  Google Scholar 

  114. Junt, T., Scandella, E. & Ludewig, B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat. Rev. Immunol. 8, 764–775 (2008).

    Article  Google Scholar 

  115. Grant, S. M., Lou, M., Yao, L., Germain, R. N. & Radtke, A. J. The lymph node at a glance - how spatial organization optimizes the immune response. J. Cell Sci. 133, jcs241828 (2020).

    Article  Google Scholar 

  116. Delves, P. J. & Roitt, I. M. The immune system. First two parts. N. Engl. J. Med. 343, 37–49 (2000).

    Article  Google Scholar 

  117. Turley, S. J., Fletcher, A. L. & Elpek, K. G. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat. Rev. Immunol. 10, 813–825 (2010).

    Article  Google Scholar 

  118. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    Article  Google Scholar 

  119. Trombetta, E. S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).

    Article  Google Scholar 

  120. Allen, C. D., Okada, T. & Cyster, J. G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  Google Scholar 

  121. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  Google Scholar 

  122. McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. Nat. Rev. Immunol. 12, 24–34 (2011).

    Article  Google Scholar 

  123. Friedman, R. S., Jacobelli, J. & Krummel, M. F. Surface-bound chemokines capture and prime T cells for synapse formation. Nat. Immunol. 7, 1101–1108 (2006).

    Article  Google Scholar 

  124. Zeng, Y. et al. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo. Eur. J. Immunol. 45, 1621–1634 (2015).

    Article  Google Scholar 

  125. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article  Google Scholar 

  126. Prados, A. et al. Fibroblastic reticular cell lineage convergence in Peyer’s patches governs intestinal immunity. Nat. Immunol. 22, 510–519 (2021).

    Article  Google Scholar 

  127. Lutge, M., Pikor, N. B. & Ludewig, B. Differentiation and activation of fibroblastic reticular cells. Immunol. Rev. 302, 32–46 (2021).

    Article  Google Scholar 

  128. Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028.e6 (2018).

    Article  Google Scholar 

  129. Tomei, A. A., Siegert, S., Britschgi, M. R., Luther, S. A. & Swartz, M. A. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 183, 4273–4283 (2009).

    Article  Google Scholar 

  130. Kim, J. et al. Characterizing natural hydrogel for reconstruction of three-dimensional lymphoid stromal network to model T-cell interactions. J. Biomed. Mater. Res. A 103, 2701–2710 (2015).

    Article  Google Scholar 

  131. Murakami, T. et al. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat. Commun. 9, 2436 (2018).

    Article  Google Scholar 

  132. Mitra, B. et al. Microdevice integrating innate and adaptive immune responses associated with antigen presentation by dendritic cells. RSC Adv. 3, 16002–16010 (2013).

    Article  Google Scholar 

  133. Gopalakrishnan, N. et al. Infection and immunity on a chip: a compartmentalised microfluidic platform to monitor immune cell behaviour in real time. Lab. Chip 15, 1481–1487 (2015).

    Article  Google Scholar 

  134. Moura Rosa, P., Gopalakrishnan, N., Ibrahim, H., Haug, M. & Halaas, O. The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device. Lab. Chip 16, 3728–3740 (2016).

    Article  Google Scholar 

  135. Byers, A. M., Tapia, T. M., Sassano, E. R. & Wittman, V. In vitro antibody response to tetanus in the MIMIC system is a representative measure of vaccine immunogenicity. Biologicals 37, 148–151 (2009).

    Article  Google Scholar 

  136. Higbee, R. G. et al. An immunologic model for rapid vaccine assessment — a clinical trial in a test tube. Altern. Lab. Anim. 37, 19–27 (2009).

    Article  Google Scholar 

  137. Giese, C. et al. Immunological substance testing on human lymphatic micro-organoids in vitro. J. Biotechnol. 148, 38–45 (2010).

    Article  Google Scholar 

  138. Kraus, T. et al. Evaluation of a 3D human artificial lymph node as test model for the assessment of immunogenicity of protein aggregates. J. Pharm. Sci. 108, 2358–2366 (2019).

    Article  Google Scholar 

  139. Purwada, A. et al. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials 63, 24–34 (2015).

    Article  Google Scholar 

  140. Purwada, A. & Singh, A. Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production. Nat. Protoc. 12, 168–182 (2017).

    Article  Google Scholar 

  141. Purwada, A., Shah, S. B., Beguelin, W., Melnick, A. M. & Singh, A. Modular immune organoids with integrin ligand specificity differentially regulate ex vivo B cell activation. ACS Biomater. Sci. Eng. 3, 214–225 (2017).

    Article  Google Scholar 

  142. Purwada, A. et al. Ex vivo synthetic immune tissues with T cell signals for differentiating antigen-specific, high affinity germinal center B cells. Biomaterials 198, 27–36 (2019).

    Article  Google Scholar 

  143. Apoorva, F. N. U. et al. Lymph node stiffness-mimicking hydrogels regulate human B-cell lymphoma growth and cell surface receptor expression in a molecular subtype-specific manner. J. Biomed. Mater. Res. A 105, 1833–1844 (2017).

    Article  Google Scholar 

  144. Beguelin, W. et al. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nat. Commun. 8, 877 (2017).

    Article  Google Scholar 

  145. Roh, K. H. et al. A synthetic stroma-free germinal center niche for efficient generation of humoral immunity ex vivo. Biomaterials 164, 106–120 (2018).

    Article  Google Scholar 

  146. Kramer, L. et al. Lipid membrane-based antigen presentation to B cells using a fully synthetic ex vivo germinal center model. Adv. Nanobiomed. Res. 2, 2100137 (2022).

    Article  Google Scholar 

  147. Jackson, K. J. et al. Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe 16, 105–114 (2014).

    Article  Google Scholar 

  148. Goyal, G. et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv. Sci. 9, e2103241 (2022).

    Article  Google Scholar 

  149. Martin, C. H., Woll, P. S., Ni, Z., Zuniga-Pflucker, J. C. & Kaufman, D. S. Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells. Blood 112, 2730–2737 (2008).

    Article  Google Scholar 

  150. Carpenter, L. et al. Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood 117, 4008–4011 (2011).

    Article  Google Scholar 

  151. French, A., Yang, C. T., Taylor, S., Watt, S. M. & Carpenter, L. Human induced pluripotent stem cell-derived B lymphocytes express sIgM and can be generated via a hemogenic endothelium intermediate. Stem Cell Dev. 24, 1082–1095 (2015).

    Article  Google Scholar 

  152. Richardson, S. E., Ghazanfari, R., Chhetri, J., Enver, T. & Boiers, C. In vitro differentiation of human pluripotent stem cells into the B lineage using OP9-MS5 co-culture. STAR Protoc. 2, 100420 (2021).

    Article  Google Scholar 

  153. Maharjan, S., Cecen, B. & Zhang, Y. S. 3D immunocompetent organ-on-a-chip models. Small Methods 4, 2000235 (2020).

    Article  Google Scholar 

  154. de Waal, A. M., Hiemstra, P. S., Ottenhoff, T. H., Joosten, S. A. & van der Does, A. M. Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax 77, 408–416 (2022).

    Article  Google Scholar 

  155. Harrington, H. et al. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol. Pharm. 11, 2082–2091 (2014).

    Article  Google Scholar 

  156. Seo, H. R. et al. Human pluripotent stem cell-derived alveolar organoid with macrophages. Int. J. Mol. Sci. 23, 9211 (2022).

    Article  Google Scholar 

  157. Pupovac, A. et al. Toward immunocompetent 3D skin models. Adv. Healthc. Mater. 7, e1701405 (2018).

    Article  Google Scholar 

  158. Ormel, P. R. et al. Microglia innately develop within cerebral organoids. Nat. Commun. 9, 4167 (2018).

    Article  Google Scholar 

  159. Rogal, J. et al. Autologous human immunocompetent white adipose tissue-on-chip. Adv. Sci. 9, e2104451 (2022).

    Article  Google Scholar 

  160. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  Google Scholar 

  161. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  Google Scholar 

  162. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9, 356–368 (2011).

    Article  Google Scholar 

  163. Benjamin, J. L., Sumpter, R. Jr., Levine, B. & Hooper, L. V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13, 723–734 (2013).

    Article  Google Scholar 

  164. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  Google Scholar 

  165. Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).

    Article  Google Scholar 

  166. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  Google Scholar 

  167. Yip, J. L. K., Balasuriya, G. K., Spencer, S. J. & Hill-Yardin, E. L. The role of intestinal macrophages in gastrointestinal homeostasis: heterogeneity and implications in disease. Cell Mol. Gastroenterol. Hepatol. 12, 1701–1718 (2021).

    Article  Google Scholar 

  168. Luciani, C., Hager, F. T., Cerovic, V. & Lelouard, H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol. 15, 40–50 (2022).

    Article  Google Scholar 

  169. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  Google Scholar 

  170. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  Google Scholar 

  171. Eberl, G., Colonna, M., Di Santo, J. P. & McKenzie, A. N. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566 (2015).

    Article  Google Scholar 

  172. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  Google Scholar 

  173. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  Google Scholar 

  174. Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009).

    Article  Google Scholar 

  175. Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    Article  Google Scholar 

  176. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  Google Scholar 

  177. Leslie, J. L. et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83, 138–145 (2015).

    Article  Google Scholar 

  178. Puschhof, J. et al. Intestinal organoid cocultures with microbes. Nat. Protoc. 16, 4633–4649 (2021).

    Article  Google Scholar 

  179. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  Google Scholar 

  180. Weller, A. et al. Quantifying the transport of biologics across intestinal barrier models in real-time by fluorescent imaging. Front. Bioeng. Biotechnol. 10, 965200 (2022).

    Article  Google Scholar 

  181. Kasendra, M. et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    Article  Google Scholar 

  182. Kasendra, M. et al. Duodenum intestine-chip for preclinical drug assessment in a human relevant model. eLife 9, e50135 (2020).

    Article  Google Scholar 

  183. Gjorevski, N. et al. Neutrophilic infiltration in Organ-on-a-Chip model of tissue inflammation. Lab. Chip 20, 3365–3374 (2020).

    Article  Google Scholar 

  184. Kerns, S. J. et al. Human immunocompetent Organ-on-Chip platforms allow safety profiling of tumor-targeted T-cell bispecific antibodies. eLife 10, e67106 (2021).

    Article  Google Scholar 

  185. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  Google Scholar 

  186. Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022).

    Article  Google Scholar 

  187. Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7, 11535 (2016).

    Article  Google Scholar 

  188. Siwczak, F. et al. Intestinal stem cell-on-chip to study human host-microbiota interaction. Front. Immunol. 12, 798552 (2021).

    Article  Google Scholar 

  189. Maurer, M. et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 220, 119396 (2019).

    Article  Google Scholar 

  190. Noel, G. et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 7, 45270 (2017).

    Article  Google Scholar 

  191. Jowett, G. M. et al. Organoids capture tissue-specific innate lymphoid cell development in mice and humans. Cell Rep. 40, 111281 (2022).

    Article  Google Scholar 

  192. Jung, J. M. et al. KIR3DS1 directs NK cell-mediated protection against human adenovirus infections. Sci. Immunol. 6, eabe2942 (2021).

    Article  Google Scholar 

  193. Nozaki, K. et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J. Gastroenterol. 51, 206–213 (2016).

    Article  Google Scholar 

  194. Rogoz, A., Reis, B. S., Karssemeijer, R. A. & Mucida, D. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J. Immunol. Methods 421, 89–95 (2015).

    Article  Google Scholar 

  195. Bouffi, C. et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat. Biotechnol. 41, 824–831 (2023).

    Article  Google Scholar 

  196. Zhou, J. et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. 26, 1077–1083 (2020).

    Article  Google Scholar 

  197. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54 (2020).

    Article  Google Scholar 

  198. Giobbe, G. G. et al. SARS-CoV-2 infection and replication in human gastric organoids. Nat. Commun. 12, 6610 (2021).

    Article  Google Scholar 

  199. Bein, A. et al. Enteric coronavirus infection and treatment modeled with an immunocompetent human intestine-on-a-chip. Front. Pharmacol. 12, 718484 (2021).

    Article  Google Scholar 

  200. Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    Article  Google Scholar 

  201. Crawford, A. & Chiu, D. Targeting solid tumors using cd3 bispecific antibodies. Mol. Cancer Ther. 20, 1350–1358 (2021).

    Article  Google Scholar 

  202. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    Article  Google Scholar 

  203. Coutzac, C. et al. Colon immune-related adverse events: anti-CTLA-4 and anti-PD-1 blockade induce distinct immunopathological entities. J. Crohns Colitis 11, 1238–1246 (2017).

    Article  Google Scholar 

  204. Grover, S. & Srivastava, A. Lymphocytic colitis-like pattern of mucosal injury and the challenges in diagnosing cancer immunotherapy-related toxicity. Cancer 125, 1768–1770 (2019).

    Article  Google Scholar 

  205. Badran, Y. R. et al. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events. J. Immunother. Cancer 7, 226 (2019).

    Article  Google Scholar 

  206. Edgar, J. M., Michaels, Y. S. & Zandstra, P. W. Multi-objective optimization reveals time- and dose-dependent inflammatory cytokine-mediated regulation of human stem cell derived T-cell development. NPJ Regen. Med. 7, 11 (2022).

    Article  Google Scholar 

  207. Khan, A. O. et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov. 13, 364–385 (2023).

    Article  Google Scholar 

  208. Taylor, C. J., Peacock, S., Chaudhry, A. N., Bradley, J. A. & Bolton, E. M. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11, 147–152 (2012).

    Article  Google Scholar 

  209. Lee, S. et al. Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cell 36, 1552–1566 (2018).

    Article  Google Scholar 

  210. Hudson, D., Fernandes, R. A., Basham, M., Ogg, G. & Koohy, H. Can we predict T cell specificity with digital biology and machine learning? Nat. Rev. Immunol. 23, 511–521 (2023).

    Article  Google Scholar 

  211. Yamauchi, T. & Moroishi, T. Hippo pathway in mammalian adaptive immune system. Cells 8, 398 (2019).

    Article  Google Scholar 

  212. Tsuruta, S. et al. Development of human gut organoids with resident tissue macrophages as a model of intestinal immune responses. Cell Mol. Gastroenterol. Hepatol. 14, 726–729.e5 (2022).

    Article  Google Scholar 

  213. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  Google Scholar 

  214. Sauna, Z. E., Lagasse, D., Pedras-Vasconcelos, J., Golding, B. & Rosenberg, A. S. Evaluating and mitigating the immunogenicity of therapeutic proteins. Trends Biotechnol. 36, 1068–1084 (2018).

    Article  Google Scholar 

  215. Rosenberg, A. S. & Sauna, Z. E. Immunogenicity assessment during the development of protein therapeutics. J. Pharm. Pharmacol. 70, 584–594 (2018).

    Article  Google Scholar 

  216. Vaisman-Mentesh, A., Gutierrez-Gonzalez, M., DeKosky, B. J. & Wine, Y. The molecular mechanisms that underlie the immune biology of anti-drug antibody formation following treatment with monoclonal antibodies. Front. Immunol. 11, 1981 (2020).

    Article  Google Scholar 

  217. Ito, S. et al. In vitro human helper T-cell assay to screen antibody drug candidates for immunogenicity. J. Immunotoxicol. 16, 125–132 (2019).

    Article  Google Scholar 

  218. Wagar, L. E., DiFazio, R. M. & Davis, M. M. Advanced model systems and tools for basic and translational human immunology. Genome Med. 10, 73 (2018).

    Article  Google Scholar 

  219. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    Article  Google Scholar 

  220. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  Google Scholar 

  221. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  Google Scholar 

  222. Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004).

    Article  Google Scholar 

  223. Briney, B., Inderbitzin, A., Joyce, C. & Burton, D. R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566, 393–397 (2019).

    Article  Google Scholar 

  224. Alberts, B. et al. In Molecular Biology of the Cell 4th ed (Garland Science, 2002).

  225. Warren, R. L. et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 21, 790–797 (2011).

    Article  Google Scholar 

  226. Robinson, J. et al. IPD-IMGT/HLA database. Nucleic Acids Res. 48, D948–D955 (2020).

    Google Scholar 

  227. Vrisekoop, N., Monteiro, J. P., Mandl, J. N. & Germain, R. N. Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 41, 181–190 (2014).

    Article  Google Scholar 

  228. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  Google Scholar 

  229. Mishra, A. K. & Mariuzza, R. A. Insights into the structural basis of antibody affinity maturation from next-generation sequencing. Front. Immunol. 9, 117 (2018).

    Article  Google Scholar 

  230. Xu, Z., Zan, H., Pone, E. J., Mai, T. & Casali, P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 12, 517–531 (2012).

    Article  Google Scholar 

  231. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  Google Scholar 

  232. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  Google Scholar 

  233. Valatas, V., Vakas, M. & Kolios, G. The value of experimental models of colitis in predicting efficacy of biological therapies for inflammatory bowel diseases. Am. J. Physiol. Gastrointest. Liver Physiol 305, G763–G785 (2013).

    Article  Google Scholar 

  234. Baydi, Z. et al. An update of research animal models of inflammatory bowel disease. ScientificWorldJournal 2021, 7479540 (2021).

    Article  Google Scholar 

  235. Knights, D., Lassen, K. G. & Xavier, R. J. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut 62, 1505–1510 (2013).

    Article  Google Scholar 

  236. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    Article  Google Scholar 

  237. Zhou, G. X. & Liu, Z. J. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J. Dig. Dis. 18, 495–503 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Mooney, A. Khalil, B. Lowe, A. Singh and Z. Zhong for providing unpublished immunofluorescence images of thymus and tonsil primary tissues and organoids (Fig. 2). Y.S.M. acknowledges support from the CancerCare Manitoba Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and N.G. conceptualized the manuscript. A.M., N.G., C.F.B. and Y.S.M. wrote the manuscript. A.M. and Y.S.M. edited the manuscript.

Corresponding authors

Correspondence to Nikolche Gjorevski or Annie Moisan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Yong Fan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michaels, Y.S., Buchanan, C.F., Gjorevski, N. et al. Bioengineering translational models of lymphoid tissues. Nat Rev Bioeng 1, 731–748 (2023). https://doi.org/10.1038/s44222-023-00101-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00101-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research