Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microtechnologies for single-cell and spatial multi-omics

Abstract

Single-cell omics assays allow the identification of the type, subtype and functional state of a single cell. To put such single-cell data in the context of tissues, spatially resolved omics can be applied to quantify gene expression and regulation in intact tissues at the genome scale. However, to obtain a full picture of gene regulatory networks in a cell, multi-omic assays are required that can assess two or more modalities of omics information. In this Review, we discuss microfabricated systems that can be engineered to isolate, probe, manipulate and process single cells at the micrometre scale for single-cell and spatial multi-omics studies. We outline microchannel-, microarray- and droplet-based microfluidic platforms, examining their application in multimodal cellular profiling at the cellular and subcellular level. Finally, we discuss the key challenges that need to be addressed to advance the translation and commercialization of such microchip-based technologies for fundamental research and medical applications.

Key points

  • Single-cell and spatial multi-omics technologies allow the investigation of cell types, fate and functional states in intact tissues.

  • Microchannel-, microarray- and droplet-based microfluidics platforms can be designed for single-cell and spatial multi-omics studies.

  • Microchip platforms enable cellular and subcellular resolution for genome analysis, epigenetics assessment and multimodal cellular profiling.

  • The sensitivity of microchip platforms and their multiplexing capacity will need to be improved to unleash their full potential in interrogating single cells in a tissue context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microtechnologies for single-cell or spatial multi-omics profiling.
Fig. 2: Microchannel-based platforms for single cell multi-omics.
Fig. 3: Microchannel-based platforms for spatial multi-omics.
Fig. 4: Microarray-based technologies for spatial profiling of intact tissue sections.
Fig. 5: Guiding principles for selecting microchip technologies for single-cell and spatial multi-omics.

Similar content being viewed by others

References

  1. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  Google Scholar 

  2. Zhang, Y. et al. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87, 9761–9768 (2015).

    Article  Google Scholar 

  3. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).

    Article  Google Scholar 

  4. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887.e1817 (2019).

    Article  Google Scholar 

  5. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e1120 (2020).

    Article  Google Scholar 

  6. Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00509-1 (2022).

    Article  Google Scholar 

  7. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  Google Scholar 

  8. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  Google Scholar 

  9. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

    Article  Google Scholar 

  10. La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature https://doi.org/10.1038/s41586-021-03775-x (2021).

    Article  Google Scholar 

  11. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  Google Scholar 

  12. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell https://doi.org/10.1016/j.cell.2021.10.024 (2021).

    Article  Google Scholar 

  13. Li, Y. E. et al. An atlas of gene regulatory elements in adult mouse cerebrum. Nature 598, 129–136 (2021).

    Article  Google Scholar 

  14. Jones, R. C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  15. Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020).

    Article  Google Scholar 

  16. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article  Google Scholar 

  17. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

    Article  Google Scholar 

  18. Wang, N. et al. Single-cell microRNA–mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat. Commun. 10, 95 (2019).

    Article  Google Scholar 

  19. Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  Google Scholar 

  20. Method of the Year 2020: spatially resolved transcriptomics. Nat. Methods https://doi.org/10.1038/s41592-020-01042-x (2021).

  21. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods https://doi.org/10.1038/s41592-022-01409-2 (2022).

    Article  Google Scholar 

  22. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  Google Scholar 

  23. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods https://doi.org/10.1038/s41592-021-01203-6 (2021).

    Article  Google Scholar 

  24. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  Google Scholar 

  25. Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    Article  Google Scholar 

  26. Burgess, D. J. Spatial transcriptomics coming of age. Nat. Rev. Genet. 20, 317 (2019).

    Article  Google Scholar 

  27. Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved transcriptomics adds a new dimension to genomics. Nat. Methods 18, 15–18 (2021).

    Article  Google Scholar 

  28. Asp, M., Bergenstrahle, J. & Lundeberg, J. Spatially resolved transcriptomes — next generation tools for tissue exploration. Bioessays 42, e1900221 (2020).

    Article  Google Scholar 

  29. Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell https://doi.org/10.1016/j.cell.2020.06.038 (2020).

    Article  Google Scholar 

  30. Zeng, H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease. Nat. Neurosci. https://doi.org/10.1038/s41593-022-01251-x (2023).

    Article  Google Scholar 

  31. Schneider, L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol. 19, 111–112 (2020).

    Article  Google Scholar 

  32. Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).

    Article  Google Scholar 

  33. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  Google Scholar 

  34. Karran, E., Mercken, M. & Strooper, B. D. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    Article  Google Scholar 

  35. Zhang, D. et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  Google Scholar 

  36. Jiang, F. et al. Simultaneous profiling of spatial gene expression and chromatin accessibility during mouse brain development. Nat. Methods https://doi.org/10.1038/s41592-023-01884-1 (2023).

    Article  Google Scholar 

  37. Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18, 345–361 (2017).

    Article  Google Scholar 

  38. Takayama, S. et al. Laminar flows: subcellular positioning of small molecules. Nature 411, 1016 (2001).

    Article  Google Scholar 

  39. Deng, Y., Finck, A. & Fan, R. Single-cell omics analyses enabled by microchip technologies. Annu. Rev. Biomed. Eng. 21, 365–393 (2019).

    Article  Google Scholar 

  40. Schuster, B. et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat. Commun. 11, 5271 (2020).

    Article  Google Scholar 

  41. Chung, A. J. A minireview on inertial microfluidics fundamentals: inertial particle focusing and secondary flow. BioChip J. 13, 53–63 (2019).

    Article  Google Scholar 

  42. Convery, N. & Gadegaard, N. 30 years of microfluidics. Micro Nano Eng. 2, 76–91 (2019).

    Article  Google Scholar 

  43. Fung, C. W., Chan, S. N. & Wu, A. R. Microfluidic single-cell analysis — toward integration and total on-chip analysis. Biomicrofluidics 14, 021502 (2020).

    Article  Google Scholar 

  44. Marcy, Y. et al. Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet. 3, e155 (2007).

    Article  Google Scholar 

  45. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  Google Scholar 

  46. Adey, A. C. Tagmentation-based single-cell genomics. Genome Res. 31, 1693–1705 (2021).

    Article  Google Scholar 

  47. Streets, A. M. et al. Microfluidic single-cell whole-transcriptome sequencing. Proc. Natl Acad. Sci. USA 111, 7048–7053 (2014).

    Article  Google Scholar 

  48. Yin, H. & Marshall, D. Microfluidics for single cell analysis. Curr. Opin. Biotechnol. 23, 110–119 (2012).

    Article  Google Scholar 

  49. Chappell, L., Russell, A. J. C. & Voet, T. Single-cell (multi)omics technologies. Annu. Rev. Genom. Hum. Genet. 19, 15–41 (2018).

    Article  Google Scholar 

  50. Lu, Y., Yang, L., Wei, W. & Shi, Q. Microchip-based single-cell functional proteomics for biomedical applications. Lab Chip 17, 1250–1263 (2017).

    Article  Google Scholar 

  51. Ma, C. et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17, 738 (2011).

    Article  Google Scholar 

  52. Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl Acad. Sci. USA 109, 419–424 (2012).

    Article  Google Scholar 

  53. Eisenstein, M. The secret life of cells. Nat. Methods 17, 7–10 (2020).

    Article  Google Scholar 

  54. Di, L. et al. RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proc. Natl Acad. Sci. USA 117, 2886–2893 (2020).

    Article  Google Scholar 

  55. Cheow, L. F. et al. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat. Methods 13, 833–836 (2016).

    Article  Google Scholar 

  56. Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 188 (2016).

    Article  Google Scholar 

  57. Han, L. et al. Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform. Sci. Rep. 4, 6485 (2014). This article reports the first demonstration of whole-genome amplification and whole-transcriptome amplification from the same single cell using a valve-based microfluidic chip.

    Article  Google Scholar 

  58. Junkin, M. et al. High-content quantification of single-cell immune dynamics. Cell Rep. 15, 411–422 (2016).

    Article  Google Scholar 

  59. Xue, M. et al. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J. Am. Chem. Soc. 137, 4066–4069 (2015).

    Article  Google Scholar 

  60. Xue, M., Wei, W., Su, Y., Johnson, D. & Heath, J. R. Supramolecular probes for assessing glutamine uptake enable semi-quantitative metabolic models in single cells. J. Am. Chem. Soc. 138, 3085–3093 (2016).

    Article  Google Scholar 

  61. Xu, A. M. et al. Integrated measurement of intracellular proteins and transcripts in single cells. Lab Chip 18, 3251–3262 (2018).

    Article  Google Scholar 

  62. Strijp, D. et al. Complete sequence-based pathway analysis by differential on-chip DNA and RNA extraction from a single cell. Sci. Rep. 7, 11030 (2017). This article reports a valve-free device to perform DNA and RNA co-profiling from the same single cell.

    Article  Google Scholar 

  63. Marie, R. et al. Sequencing of human genomes extracted from single cancer cells isolated in a valveless microfluidic device. Lab Chip 18, 1891–1902 (2018).

    Article  Google Scholar 

  64. Tang, L. Multiomics sequencing goes spatial. Nat. Methods 18, 31–31 (2021).

    Article  Google Scholar 

  65. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  Google Scholar 

  66. Karaiskos, N. et al. The Drosophila embryo at single-cell transcriptome resolution. Science 358, 194–199 (2017).

    Article  Google Scholar 

  67. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00370-8 (2021).

    Article  Google Scholar 

  68. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022). This article is the first report on spatial epigenomics sequencing.

    Article  Google Scholar 

  69. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature https://doi.org/10.1038/s41586-022-05094-1 (2022).

    Article  Google Scholar 

  70. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e1618 (2020). This article reports the first demonstration of spatial multi-omics sequencing using a microfluidic crossflow approach for in situ barcoding of biomolecules, that is, mRNAs and proteins, in tissue.

    Article  Google Scholar 

  71. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01676-0 (2023).

    Article  Google Scholar 

  72. Liu, Y., Enninful, A., Deng, Y. & Fan, R. Spatial transcriptome sequencing of FFPE tissues at cellular level. Preprint at bioRxiv https://doi.org/10.1101/2020.10.13.338475 (2020).

    Article  Google Scholar 

  73. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    Article  Google Scholar 

  74. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 40, 1349–1359 (2022).

    Article  Google Scholar 

  75. Dong, R. & Yuan, G.-C. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol. 22, 145 (2021).

    Article  Google Scholar 

  76. Miller, B. F., Huang, F., Atta, L., Sahoo, A. & Fan, J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat. Commun. 13, 2339 (2022).

    Article  Google Scholar 

  77. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50–e50 (2021).

    Article  Google Scholar 

  78. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e1626 (2020).

    Article  Google Scholar 

  79. Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).

    Article  Google Scholar 

  80. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    Article  Google Scholar 

  81. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460 (1996).

    Article  Google Scholar 

  82. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). This article reports the first demonstration of spatial transcriptome profiling using next-generation sequencing.

    Article  Google Scholar 

  83. Hudson, W. H. & Sudmeier, L. J. Localization of T cell clonotypes using the Visium spatial transcriptomics platform. STAR Protoc. 3, 101391 (2022).

    Article  Google Scholar 

  84. Lebrigand, K. et al. The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Res. 51, e47 (2023).

    Article  Google Scholar 

  85. McKellar, D. W. et al. Spatial mapping of the total transcriptome by in situ polyadenylation. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01517-6 (2022).

    Article  Google Scholar 

  86. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).

    Article  Google Scholar 

  87. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017). This article reports co-profiling of transcriptome and surface proteins from the same single cells by next-generation sequencing.

    Article  Google Scholar 

  88. Ben-Chetrit, N. et al. Integration of whole transcriptome spatial profiling with protein markers. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01536-3 (2023).

    Article  Google Scholar 

  89. Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. Science 373, 111–117 (2021).

    Article  Google Scholar 

  90. Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).

    Article  Google Scholar 

  91. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  Google Scholar 

  92. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    Article  Google Scholar 

  93. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  Google Scholar 

  94. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019). This article is the first to report spatial transcriptome sequencing with subcellular resolution.

    Article  Google Scholar 

  95. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e1721 (2022).

    Article  Google Scholar 

  96. Cho, C. S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572.e3522 (2021).

    Article  Google Scholar 

  97. Mitra, R. D. & Church, G. M. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 27, e34–e39 (1999).

    Article  Google Scholar 

  98. Fu, X. et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 185, 4621–4633.e4617 (2022).

    Article  Google Scholar 

  99. Borm, L. E. et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01455-3 (2022).

    Article  Google Scholar 

  100. Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660.e1619 (2019).

    Article  Google Scholar 

  101. Ortiz, C. et al. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446 (2020).

    Article  Google Scholar 

  102. Webster, A. L. H. et al. Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer. Nature 612, 495–502 (2022).

    Article  Google Scholar 

  103. Kaufmann, M. et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 25, 944–955 (2022).

    Article  Google Scholar 

  104. Boyd, D. F. et al. Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature 587, 466–471 (2020).

    Article  Google Scholar 

  105. Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

    Article  Google Scholar 

  106. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  Google Scholar 

  107. Zhiliang, B. et al. Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells. J. Immunother. Cancer 9, e002328 (2021).

    Article  Google Scholar 

  108. Bai, Z. et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci. Adv. 8, eabj2820 (2022).

    Article  Google Scholar 

  109. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    Article  Google Scholar 

  110. Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    Article  Google Scholar 

  111. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  Google Scholar 

  112. Lareau, C. A. et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39, 451–461 (2021).

    Article  Google Scholar 

  113. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  Google Scholar 

  114. Zhu, C. et al. An ultrahigh-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  Google Scholar 

  115. Zhu, C. et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat. Methods 18, 283–292 (2021).

    Article  Google Scholar 

  116. Fiskin, E. et al. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. Nat. Biotechnol. 40, 374–381 (2022). This article reports a nanobody-displaying phage method to capture surface protein expression.

    Article  Google Scholar 

  117. Ingram, J. R., Schmidt, F. I. & Ploegh, H. L. Exploiting nanobodies’ singular traits. Annu. Rev. Immunol. 36, 695–715 (2018).

    Article  Google Scholar 

  118. Nicetto, D. et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science 363, 294–297 (2019).

    Article  Google Scholar 

  119. Tedesco, M. et al. Chromatin velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nat. Biotechnol. 40, 235–244 (2022). This article reports single-cell profiling of both heterochromatin and euchromatin.

    Article  Google Scholar 

  120. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  Google Scholar 

  121. Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).

    Article  Google Scholar 

  122. Zhang, B. et al. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01250-0 (2022).

    Article  Google Scholar 

  123. Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Article  Google Scholar 

  124. Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 19, 547–553 (2022). This article reports a technology for co-profiling nuclear gene regulatory proteins as well as transcriptomic and epigenetic information.

    Article  Google Scholar 

  125. Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    Article  Google Scholar 

  126. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

    Article  Google Scholar 

  127. Han, Y. L. et al. Cell swelling, softening and invasion in a three-dimensional breast cancer model. Nat. Phys. 16, 101–108 (2020).

    Article  Google Scholar 

  128. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  Google Scholar 

  129. Chen, W. et al. Live-seq enables temporal transcriptomic recording of single cells. Nature 608, 733–740 (2022).

    Article  Google Scholar 

  130. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  Google Scholar 

  131. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00515-3 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from a Packard Fellowship for Science and Engineering (to R.F.), a Yale Stem Cell Center Chen Innovation Award (to R.F.) and the US National Institutes of Health (grant numbers RF1MH128876, U54AG076043, U54AG079759, UG3CA257393, UH3CA257393, R01CA245313 and U54CA274509 to R.F.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the preparation of the manuscript.

Corresponding authors

Correspondence to Yanxiang Deng, Zhiliang Bai or Rong Fan.

Ethics declarations

Competing interests

R.F. is scientific founder and adviser for IsoPlexis, Singleron Biotechnologies, and AtlasXomics. The interests of R.F. were reviewed and managed by Yale University Provost’s Office in accordance with the University’s conflict of interest policies. Y.D. and Z.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Katalin Susztak, Kun Zhang and Qin Ma for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CG000338: https://www.10xgenomics.com/support/single-cell-multiome-atac-plus-gene-expression/documentation/steps/library-prep/chromium-next-gem-single-cell-multiome-atac-plus-gene-expression-reagent-kits-user-guide

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Bai, Z. & Fan, R. Microtechnologies for single-cell and spatial multi-omics. Nat Rev Bioeng 1, 769–784 (2023). https://doi.org/10.1038/s44222-023-00084-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00084-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing