Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomaterials tools to modulate the tumour microenvironment in immunotherapy

Abstract

Cancer immunotherapies, such as immune checkpoint blockade and chimeric antigen receptor (CAR) T cell therapy, have transformed clinical oncology. However, limited patient response rates and immune-related adverse events remain major clinical challenges. The immunosuppressive tumour microenvironment (TME) has a key role in the response to immunotherapy. The TME of solid tumours can prevent infiltration and negatively affect the activity of immune cells. The immunosuppressive features of the TME can be modulated using biomaterials-based tools that target, respond to and modulate the physicochemical properties of the TME, including hypoxia, acidity, high levels of reactive oxygen species, a dense extracellular matrix and abnormal vasculature. In this Review, we introduce hallmarks of the TME and discuss biomaterials and nanomedicine technologies that can regulate the TME of solid tumours to improve the efficacy of different types of immunotherapy. We outline the remaining challenges in the clinical translation of TME-modulating biomaterials tools and conclude by envisioning future milestones in this field.

Key points

  • The immunosuppressive tumour microenvironment (TME) has a crucial role in limiting the therapeutic responses of solid tumours to immunotherapy.

  • The physicochemical features of the TME, including hypoxia, acidity and high reactive oxygen species (ROS) levels, contribute to the immunosuppressive TME.

  • These features of the TME can be modulated by biomaterials and nanomedicine tools to make the TME susceptible to antitumour immune responses.

  • Combining TME-modulating biomaterials-based therapeutics with immunotherapies can improve clinical outcomes and increase patient response rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The tumour microenvironment.
Fig. 2: Biomaterials tools to modulate tumour hypoxia.
Fig. 3: Biomaterials tools to reduce tumour acidity and ROS levels.
Fig. 4: Physical opening of the tumour barrier.

Similar content being viewed by others

References

  1. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    Article  Google Scholar 

  2. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  Google Scholar 

  3. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  Google Scholar 

  4. Wiemann, B. & Starnes, C. O. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol. Ther. 64, 529–564 (1994).

    Article  Google Scholar 

  5. Hernandez-Luna, M. A. & Luria-Perez, R. Cancer immunotherapy: priming the host immune response with live attenuated Salmonella enterica. J. Immunol. Res. 2018, 2984247 (2018).

    Article  Google Scholar 

  6. Zhang, J. Y., Shi, Z. P., Xu, X., Yu, Z. R. & Mi, J. The influence of microenvironment on tumor immunotherapy. FEBS J 286, 4160–4175 (2019).

    Article  Google Scholar 

  7. Chen, X. M. & Er, W. The role of tumor microenvironment in cancer immunotherapy. Prog. Biochem. Biophys. 44, 641–648 (2017).

    Google Scholar 

  8. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  Google Scholar 

  9. Sanmamed, M. F. & Chen, L. P. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175, 313–326 (2018).

    Article  Google Scholar 

  10. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  Google Scholar 

  11. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    Article  Google Scholar 

  12. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  Google Scholar 

  13. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  Google Scholar 

  14. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  Google Scholar 

  15. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  Google Scholar 

  16. Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  Google Scholar 

  17. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  Google Scholar 

  18. Wu, M. et al. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems. J. Theor. Biol. 355, 194–207 (2014).

    Article  MathSciNet  Google Scholar 

  19. Luo, Z. et al. Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Adv. Drug Deliv. Rev. 185, 114301 (2022).

    Article  Google Scholar 

  20. He, Z. C. & Zhang, S. X. Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front. Immunol. 12, 741305 (2021).

    Article  Google Scholar 

  21. Ren, L. et al. Hypoxia-induced CCL28 promotes recruitment of regulatory T cells and tumor growth in liver cancer. Oncotarget 7, 75763–75773 (2016).

    Article  Google Scholar 

  22. Mahoney, K. M., Rennert, P. D. & Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015).

    Article  Google Scholar 

  23. Kievit, F. M. & Zhang, M. Q. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater. 23, H217–H247 (2011).

    Article  Google Scholar 

  24. Malam, Y., Loizidou, M. & Seifalian, A. M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 30, 592–599 (2009).

    Article  Google Scholar 

  25. Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  26. Liu, J. J., Chen, Q., Feng, L. Z. & Liu, Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 21, 55–73 (2018).

    Article  Google Scholar 

  27. Bertrand, N., Wu, J., Xu, X. Y., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  Google Scholar 

  28. Westendorf, A. M. et al. Hypoxia enhances immunosuppression by inhibiting CD4+ effector T cell function and promoting Treg activity. Cell. Physiol. Biochem. 41, 1271–1284 (2017).

    Article  Google Scholar 

  29. Irvine, D. J. & Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article  Google Scholar 

  30. Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    Article  Google Scholar 

  31. Li, J. C. et al. Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12, 8520–8530 (2018).

    Article  Google Scholar 

  32. Hu, S. C. et al. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater. 135, 567–581 (2021).

    Article  Google Scholar 

  33. Wang, M. N. et al. Role of tumor microenvironment in tumorigenesis. J. Cancer 8, 761–773 (2017).

    Article  Google Scholar 

  34. Mocellin, S., Wang, E. & Marincola, F. M. Cytokines and immune response in the tumor microenvironment. J. Immunother. 24, 392–407 (2001).

    Article  Google Scholar 

  35. Dai, Y. L., Xu, C., Sun, X. L. & Chen, X. Y. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 46, 3830–3852 (2017).

    Article  Google Scholar 

  36. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  Google Scholar 

  37. Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58, 1408–1416 (1998).

    Google Scholar 

  38. Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    Article  Google Scholar 

  39. Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour–host interface. Nature 411, 375–379 (2001).

    Article  Google Scholar 

  40. Salmon, H., Remark, R., Gnjatic, S. & Merad, M. Host tissue determinants of tumour immunity. Nat. Rev. Cancer 19, 215–227 (2019).

    Google Scholar 

  41. Giraldo, N. A. et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res 23, 4416–4428 (2017).

    Article  Google Scholar 

  42. Brown, J. M. & William, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4, 437–447 (2004).

    Article  Google Scholar 

  43. Jing, X. M. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157 (2019).

    Article  Google Scholar 

  44. Vaupel, P., Hockel, M. & Mayer, A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signal. 9, 1221–1235 (2007).

    Article  Google Scholar 

  45. Song, G. S., Cheng, L., Chao, Y., Yang, K. & Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 29, 1700996 (2017).

    Article  Google Scholar 

  46. Stepien, K., Ostrowski, R. P. & Matyja, E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med. Oncol. 33, 101 (2016).

    Article  Google Scholar 

  47. Fernandez, E. et al. Hyperbaric oxygen and radiation therapy: a review. Clin. Transl. Oncol. 23, 1047–1053 (2021).

    Article  Google Scholar 

  48. Daruwalla, J. & Christophi, C. Hyperbaric oxygen therapy for malignancy: a review. World J. Surg. 30, 2112–2131 (2006).

    Article  Google Scholar 

  49. Maier, A. et al. Hyperbaric oxygen and photodynamic therapy in the treatment of advanced carcinoma of the cardia and the esophagus. Lasers Surg. Med. 26, 308–315 (2000).

    Article  Google Scholar 

  50. Denko, N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705–713 (2008).

    Article  Google Scholar 

  51. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    Article  Google Scholar 

  52. Graham, K. & Unger, E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomedicine 13, 6049–6058 (2018).

    Article  Google Scholar 

  53. Huber, V. et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin. Cancer Biol. 43, 74–89 (2017).

    Article  Google Scholar 

  54. Heiden, M. G. V., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  55. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    Article  Google Scholar 

  56. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    Article  Google Scholar 

  57. Lacroix, R., Rozeman, E. A., Kreutz, M., Renner, K. & Blank, C. U. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol. Immunother. 67, 1331–1348 (2018).

    Article  Google Scholar 

  58. Zheng, X. C. et al. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng. 1, 0057 (2017).

    Article  Google Scholar 

  59. Chao, M. et al. A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. eLife 5, e15691 (2016).

    Article  Google Scholar 

  60. Zhang, Y. X. et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett. 19, 2774–2783 (2019).

    Article  Google Scholar 

  61. Koukourakis, M. et al. Blocking LDHA glycolytic pathway sensitizes glioblastoma cells to radiation and temozolomide. Biochem. Biophys. Res. Commun. 491, 932–938 (2017).

    Article  Google Scholar 

  62. Van Poznak, C. et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res. Treat. 66, 239–248 (2001).

    Article  Google Scholar 

  63. de la Cruz-Lopez, K. G., Castro-Munoz, L. J., Reyes-Hernandez, D. O., Garcia-Carranca, A. & Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol. 9, 1143 (2019).

    Article  Google Scholar 

  64. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  Google Scholar 

  65. Cui, Q. et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat. 41, 1–25 (2018).

    Article  Google Scholar 

  66. Peng, S. J., Xiao, F. F., Chen, M. W. & Gao, H. L. Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy. Adv. Sci. 9, e2103836 (2022).

    Article  Google Scholar 

  67. Malmberg, K. J. Effective immunotherapy against cancer — a question of overcoming immune suppression and immune escape? Cancer Immunol. Immun. 53, 879–892 (2004).

    Article  Google Scholar 

  68. Aboelella, N. S., Brandle, C., Kim, T., Ding, Z. C. & Zhou, G. Oxidative stress in the tumor microenvironment and its relevance to cancer immunotherapy. Cancers 13, 986 (2021).

    Article  Google Scholar 

  69. De la Fuente, M. & Miquel, J. An update of the oxidation–inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr. Pharm. Des. 15, 3003–3026 (2009).

    Article  Google Scholar 

  70. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article  Google Scholar 

  71. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–U210 (2013).

    Article  Google Scholar 

  72. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  Google Scholar 

  73. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  Google Scholar 

  74. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  Google Scholar 

  75. Pei, J. P., Zhang, C. D., Yusupu, M., Zhang, C. & Dai, D. Q. Screening and validation of the hypoxia-related signature of evaluating tumor immune microenvironment and predicting prognosis in gastric cancer. Front. Immunol. 12, 705511 (2021).

    Article  Google Scholar 

  76. Wu, K. Y. et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front. Immunol. 11, 1731 (2020).

    Article  Google Scholar 

  77. Zhang, W. J. et al. Hypoxia-inducible factor-1 alpha correlates with tumor-associated macrophages infiltration, influences survival of gastric cancer patients. J. Cancer 8, 1818–1825 (2017).

    Article  Google Scholar 

  78. Van Overmeire, E., Laoui, D., Keirsse, J. & Van Ginderachter, J. A. Hypoxia and tumor-associated macrophages: a deadly alliance in support of tumor progression. Oncoimmunology 3, e27561 (2014).

    Article  Google Scholar 

  79. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559 (2014).

    Article  Google Scholar 

  80. Zabijak, L. et al. Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol. Immun. 64, 1601–1608 (2015).

    Article  Google Scholar 

  81. Richardson, J. R., Schollhorn, A., Gouttefangeas, C. & Schuhmacher, J. CD4+ T cells: multitasking cells in the duty of cancer immunotherapy. Cancers 13, 596 (2021).

    Article  Google Scholar 

  82. Yan, S. S., Zhang, Y. G. & Sun, B. The function and potential drug targets of tumour-associated Tregs for cancer immunotherapy. Sci. China Life Sci. 62, 179–186 (2019).

    Article  Google Scholar 

  83. Ben-Shoshan, J., Maysel-Auslender, S., Mor, A., Keren, G. & George, J. Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1α. Eur. J. Immunol. 38, 2412–2418 (2008).

    Article  Google Scholar 

  84. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645 (2021).

    Article  Google Scholar 

  85. Liu, Y. N. et al. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways. Front. Immunol. 11, 1906 (2020).

    Article  Google Scholar 

  86. Wiley, S. Z., Sriram, K., Salmeron, C. & Insel, P. A. GPR68: an emerging drug target in cancer. Int. J. Mol. Sci. 20, 559 (2019).

    Article  Google Scholar 

  87. Cao, L. et al. Inhibition of host Ogr1 enhances effector CD8+ T-cell function by modulating acidic microenvironment. Cancer Gene Ther 28, 1213–1224 (2021).

    Article  MathSciNet  Google Scholar 

  88. Winterbourn, C. C. Oxidative reactions of hemoglobin. Meth. Enzymol 186, 265–272 (1990).

    Article  Google Scholar 

  89. D’Agnillo, F. & Chang, T. M. S. Polyhemoglobin superoxide dismutase catalase as a blood substitute with antioxidant properties. Nat. Biotechnol. 16, 667–671 (1998).

    Article  Google Scholar 

  90. Schutt, E. G., Klein, D. H., Mattrey, R. M. & Riess, J. G. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew. Chem. Int. Ed. 42, 3218–3235 (2003).

    Article  Google Scholar 

  91. Riess, J. G. Fluorous micro- and nanophases with a biomedical perspective. Tetrahedron 58, 4113–4131 (2002).

    Article  Google Scholar 

  92. Sahu, A., Kwon, I. & Tae, G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 228, 119578 (2020).

    Article  Google Scholar 

  93. Yang, Z. et al. Perfluorocarbon loaded fluorinated covalent organic polymers with effective sonosensitization and tumor hypoxia relief enable synergistic sonodynamic-immunotherapy. Biomaterials 280, 121250 (2022).

    Article  Google Scholar 

  94. Zhou, Z. et al. Perfluorocarbon nanoparticle-mediated platelet inhibition promotes intratumoral infiltration of T cells and boosts immunotherapy. Proc. Natl Acad. Sci. USA 116, 11972–11977 (2019).

    Article  Google Scholar 

  95. Chen, Q. et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl Acad. Sci. USA 114, 5343–5348 (2017).

    Article  Google Scholar 

  96. Laurent, A. et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65, 948–956 (2005).

    Article  Google Scholar 

  97. Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L. A. & Seliger, B. Hydrogen peroxide — production, fate and role in redox signaling of tumor cells. Cell Commun. Signal. 13, 39 (2015).

    Article  Google Scholar 

  98. Aebi, H. Catalase in vitro. Meth. Enzymol. 105, 121–126 (1984).

    Article  Google Scholar 

  99. Gong, F. et al. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today 32, 100851 (2020).

    Article  Google Scholar 

  100. Chao, Y. et al. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Eng. 2, 611–621 (2018). This article reports the design of hydrogels modified with radioisotopes, catalase and an immunoadjuvant that can be injected to relieve tumour hypoxia and improve radioisotope therapy.

    Article  Google Scholar 

  101. Meng, Z. Q. et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 31, e1900927 (2019).

    Article  Google Scholar 

  102. Song, G. S. et al. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy. Adv. Mater. 28, 7143 (2016).

    Article  Google Scholar 

  103. Chen, Q. et al. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 31, 1802228 (2019).

    Article  Google Scholar 

  104. Hei, Y. et al. Multifunctional immunoliposomes combining catalase and PD-LI antibodies overcome tumor hypoxia and enhance immunotherapeutic effects against melanoma. Int. J. Nanomed. 15, 1677–1691 (2020).

    Article  Google Scholar 

  105. Song, X. J. et al. Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 18, 6360–6368 (2018). This article reports the sequential delivery of catalase and H2O2 by liposomes into a tumour for sustained oxygen production.

    Article  Google Scholar 

  106. Wang, W. et al. Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat. Commun. 13, 4495 (2022). This article reports photosynthetic microcapsules based on algal microorganisms and upconverted nanoparticles that can be applied to create a hyperoxic TME and improve outcomes of PD-1 antibody therapy.

    Article  Google Scholar 

  107. Liang, M. M. & Yan, X. Y. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019).

    Article  Google Scholar 

  108. Zhu, W. W. et al. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 26, 5490–5498 (2016).

    Article  Google Scholar 

  109. Prasad, P. et al. Multifunctional albumin–MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8, 3202–3212 (2014).

    Article  Google Scholar 

  110. Ding, B. B., Zheng, P., Ma, P. A. & Lin, J. Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Adv. Mater. 32, e1905823 (2020).

    Article  Google Scholar 

  111. Yang, G. B. et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8, 902 (2017).

    Article  Google Scholar 

  112. Lan, G. X. et al. Nanoscale metal–organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 140, 5670–5673 (2018). This article reports ferric oxygen clusters in a ferroporphyrin metal–organic framework that catalyse the Fenton reaction to generate oxygen, thereby modulating tumour hypoxia and improving outcomes of photodynamic therapy combined with PD-L1 antibody therapy.

    Article  Google Scholar 

  113. Hou, L. et al. Hybrid-membrane-decorated Prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv. Mater. 34, e2200389 (2022).

    Article  Google Scholar 

  114. Ding, Y. et al. A nanomedicine fabricated from gold nanoparticles-decorated metal–organic framework for cascade chemo/chemodynamic cancer therapy. Adv. Sci. 7, 2001060 (2020).

    Article  Google Scholar 

  115. Liang, S. et al. Intelligent hollow Pt-CuS Janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 19, 4134–4145 (2019).

    Article  Google Scholar 

  116. Sang, Y. J. et al. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc. 142, 5177–5183 (2020).

    Article  Google Scholar 

  117. Golchin, J. et al. Nanozyme applications in biology and medicine: an overview. Artif. Cells Nanomed. Biotechnol. 45, 1069–1076 (2017).

    Article  Google Scholar 

  118. Du, J. Z., Mao, C. Q., Yuan, Y. Y., Yang, X. Z. & Wang, J. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnol. Adv. 32, 789–803 (2014).

    Article  Google Scholar 

  119. Yang, G. B. et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 18, 2475–2484 (2018).

    Article  Google Scholar 

  120. Cheng, R., Meng, F. H., Deng, C. & Zhong, Z. Y. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 10, 656–670 (2015).

    Article  Google Scholar 

  121. Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    Article  Google Scholar 

  122. Dong, Z. L. et al. Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress. Chem 6, 1391–1407 (2020).

    Article  Google Scholar 

  123. Dong, Z. L. et al. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 110, 60–70 (2016).

    Article  Google Scholar 

  124. Dong, Z. L. et al. Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J. Am. Chem. Soc. 140, 2165–2178 (2018).

    Article  Google Scholar 

  125. Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019). This article reports a fibrinase gel spray loaded with calcium carbonate nanoparticles and CD47 antibodies that can be applied to neutralize tumour acidity and improve CD47 antibody therapy.

    Article  Google Scholar 

  126. Wang, C. J. et al. Coordination polymer-coated CaCO3 reinforces radiotherapy by reprogramming the immunosuppressive metabolic microenvironment. Adv. Mater. 34, e2106520 (2022).

    Article  Google Scholar 

  127. An, J. Y. et al. Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano 14, 7639–7650 (2020).

    Article  Google Scholar 

  128. Supuran, C. T., Scozzafava, A. & Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev. 23, 146–189 (2003).

    Article  Google Scholar 

  129. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    Article  Google Scholar 

  130. Aruoma, O. I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75, 199–212 (1998).

    Article  Google Scholar 

  131. Mates, J. M. & Sanchez-Jimenez, F. M. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol. 32, 157–170 (2000).

    Article  Google Scholar 

  132. Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 27, 165–197 (2009).

    Article  Google Scholar 

  133. Wang, C. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl Med. 10, eaan3682 (2018). This article reports ROS-scavenging hydrogels that can be applied to reduce the level of ROS in tumours, thereby improving chemotherapy combined with PD-L1 antibody therapy.

    Article  Google Scholar 

  134. Yu, S. J. et al. Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv. Mater. 30, e1801527 (2018).

    Article  Google Scholar 

  135. Deng, H. Z. et al. Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nat. Commun. 11, 4951 (2020).

    Article  Google Scholar 

  136. Moloney, J. N. & Cotter, T. G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50–64 (2018).

    Article  Google Scholar 

  137. Ohta, S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Des. 17, 2241–2252 (2011).

    Article  Google Scholar 

  138. Liu, C. L., Zhang, K. & Chen, G. Hydrogen therapy: from mechanism to cerebral diseases. Med. Gas Res. 6, 48–54 (2016).

    Article  Google Scholar 

  139. Lin, H., Chen, Y. & Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47, 1938–1958 (2018).

    Article  Google Scholar 

  140. Yu, S. M. et al. NIR-laser-controlled hydrogen-releasing PdH nanohydride for synergistic hydrogen-photothermal antibacterial and wound-healing therapies. Adv. Funct. Mater. 29, 1905697 (2019).

    Article  Google Scholar 

  141. Gong, F. et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem 8, 268–286 (2022).

    Article  Google Scholar 

  142. Yang, N. L. et al. Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth. Nat. Commun. 13, 2336 (2022).

    Article  Google Scholar 

  143. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  Google Scholar 

  144. Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumor angiogenesis and metastasis — correlation in invasive breast-carcinoma. N. Engl. J. Med. 324, 1–8 (1991).

    Article  Google Scholar 

  145. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  Google Scholar 

  146. Taleb, M. et al. Bifunctional therapeutic peptide assembled nanoparticles exerting improved activities of tumor vessel normalization and immune checkpoint inhibition. Adv. Healthc. Mater. 10, e2100051 (2021).

    Article  Google Scholar 

  147. Chen, Q. et al. Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. Biomaterials 148, 69–80 (2017).

    Article  Google Scholar 

  148. Sung, Y. C. et al. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat. Nanotechnol. 14, 1160–1169 (2019). This article reports lipid–PLGA nanoparticles loaded with a NO donor, which continuously releases NO in the tumour to normalize tumour vasculogenesis.

    Article  Google Scholar 

  149. Tian, L. L. et al. Cerenkov luminescence-induced NO release from P-32-labeled ZnFe(CN)5NO nanosheets to enhance radioisotope-immunotherapy. Matter 1, 1061–1076 (2019).

    Article  Google Scholar 

  150. Song, G. S. et al. Core-shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 27, 6110–6117 (2015).

    Article  Google Scholar 

  151. He, Y. C. et al. Pyroelectric catalysis-based “nano-lymphatic” reduces tumor interstitial pressure for enhanced penetration and hydrodynamic therapy. ACS Nano 15, 10488–10501 (2021).

    Article  Google Scholar 

  152. Chen, Q. et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 31, e1900192 (2019). This article reports that mild photothermal effects dilate tumour blood vessels and accelerate intratumoral blood flow, thereby improving CAR T cell infiltration and thus, CAR T cell therapy.

    Article  Google Scholar 

  153. Barker, H. E., Paget, J. T. E., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  Google Scholar 

  154. Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl Med. 9, eaal0225 (2017).

    Article  Google Scholar 

  155. Liang, C. et al. Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies. Biomaterials 197, 368–379 (2019).

    Article  Google Scholar 

  156. Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

    Article  Google Scholar 

  157. Wang, H. R. et al. Hyaluronidase with pH-responsive dextran modification as an adjuvant nanomedicine for enhanced photodynamic-immunotherapy of cancer. Adv. Funct. Mater. 29, 1902440 (2019).

    Article  Google Scholar 

  158. Wei, Z. et al. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat. Commun. 12, 440 (2021).

    Article  Google Scholar 

  159. Chen, Q., Chen, M. C. & Liu, Z. Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chem. Soc. Rev. 48, 5506–5526 (2019).

    Article  Google Scholar 

  160. Hotz, C. et al. Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl Med. 13, eabc7804 (2021).

    Article  Google Scholar 

  161. Androulla, M. N. & Lefkothea, P. C. CAR T-cell therapy: a new era in cancer immunotherapy. Curr. Pharm. Biotechnol. 19, 5–18 (2018).

    Article  Google Scholar 

  162. Prasad, V. Tisagenlecleucel — the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 15, 11 (2018).

    Article  Google Scholar 

  163. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article  Google Scholar 

  164. Weber, J. Immune checkpoint proteins: a new therapeutic paradigm for cancer-preclinical background: CTLA-4 and PD-1 blockade. Semin. Oncol. 37, 430–439 (2010).

    Article  Google Scholar 

  165. Goodman, A., Patel, S. P. & Kurzrock, R. PD-1–PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat. Rev. Clin. Oncol. 14, 203–220 (2017).

    Article  Google Scholar 

  166. Patel, S. A. & Minn, A. J. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48, 417–433 (2018).

    Article  Google Scholar 

  167. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  Google Scholar 

  168. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    Article  Google Scholar 

  169. Melero, I. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014).

    Article  Google Scholar 

  170. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  Google Scholar 

  171. Parkinson, D. R. et al. Interleukin-2 therapy in patients with metastatic malignant-melanoma — a phase-II study. J. Clin. Oncol. 8, 1650–1656 (1990).

    Article  Google Scholar 

  172. Kaczanowska, S., Joseph, A. M. & Davila, E. TLR agonists: our best frenemy in cancer immunotherapy. J. Leukoc. Biol. 93, 847–863 (2013).

    Article  Google Scholar 

  173. Sylvester, R. J., van der Meijden, A. P. M. & Lamm, D. L. Intravesical bacillus Calmette–Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J. Urol. 168, 1964–1970 (2002).

    Article  Google Scholar 

  174. Russell, S. J., Peng, K. W. & Bell, J. C. Oncolytic virotherapy. Nat. Biotechnol. 30, 658–670 (2012).

    Article  Google Scholar 

  175. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  Google Scholar 

  176. Krupke, D. M. et al. The mouse tumor biology database: a comprehensive resource for mouse models of human cancer. Cancer Res. 77, E67–E70 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China (grant 2021YFF0701800), the National Natural Science Foundation of China (grants 52032008, 32101070), the Jiangsu Social Development Project (grant BE2019658), the National Postdoctoral Program for Innovative Talents (grant BX0200230), the Suzhou Key Laboratory of Nanotechnology and Biomedicine, the Postdoctoral Research Fund of Jiangsu Province (grant 2021K093A) and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to the discussion of the content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Zhuang Liu.

Ethics declarations

Competing interests

Z.L. is the founder of InnoBM Pharmaceuticals, a start-up company developing biomaterial-based pharmaceuticals to improve immunotherapies against solid tumours (http://innobm.com/). Y.C. declares no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks James Moon, Helena Florindo, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, Y., Liu, Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat Rev Bioeng 1, 125–138 (2023). https://doi.org/10.1038/s44222-022-00004-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-022-00004-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer