Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous electrochemical uranium extraction from wastewater with net electrical energy production

Abstract

Extracting uranium from uranium mine wastewater is highly important from both the environmental protection and the resource preservation perspectives. However, conventional adsorption methods and zero valent iron-induced reductive precipitation methods have intrinsic limitations. Here we propose a spontaneous electrochemical method that spatially decouples the uranium–adsorption–reduction reactions and the iron oxidation reaction, enabling stable and efficient uranium extraction with net electrical energy output. U(VI) species are firstly adsorbed on a carbonaceous electrode, and subsequently reduced by electrons derived from iron oxidation. Using simulated wastewater, the spontaneous electrochemical method achieves 12-fold higher uranium extraction efficiency in comparison with the adsorption method. Using real wastewater, the uranium extraction efficiency reaches 303 mg g−1 upon 60 h operation with simultaneous net electrical energy production of 0.65 Wh m−2 with an operating cost of only USD 3.94–6.94 per kg of U. This work can pave a new avenue for cost-effective uranium recovery from mine wastewater.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic representation of the SPEC method and the calculated potentials.
Fig. 2: Uranium extraction from water by the SPEC method with simultaneous energy recovery.
Fig. 3: Morphological characterizations of the extracted uranium.
Fig. 4: Chemical properties of the extracted uranium.
Fig. 5: Possible reactive pathways of the SPEC method.
Fig. 6: Recovery of extracted uranium.
Fig. 7: SPEC uranium extraction from real uranium mine wastewater.

Similar content being viewed by others

Data availability

All data that support the findings of this study are presented in the article and Supplementary Information. Source data are provided with this paper. The data that support the findings of this study are openly available in the Figshare repository with identifier https://doi.org/10.6084/m9.figshare.23993085.

References

  1. Rhodes, R. More nuclear power can speed CO2 cuts. Nature 548, 281 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Uranium 2020 (NEA, IAEA, 2021).

  3. Liu, C. et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2, 17007 (2017).

    Article  CAS  Google Scholar 

  4. Abney, C. W., Mayes, R. T., Saito, T. & Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 117, 13935–14013 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Tsouris, C. Uranium extraction: fuel from seawater. Nat. Energy 2, 17022 (2017).

    Article  Google Scholar 

  6. Zheng, M. et al. Efficient adsorption of europium(III) and uranium(VI) by titanate nanorings: insights into radioactive metal species. Environ. Sci. Ecotechnol. 2, 100031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tsarev, S., Collins, R. N., Fahy, A. & Waite, T. D. Reduced uranium phases produced from anaerobic reaction with nanoscale zerovalent Iron. Environ. Sci. Technol. 50, 2595–2601 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, Y. et al. Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat. Sustain. 4, 708–714 (2021).

    Article  Google Scholar 

  9. Yuan, Y. et al. Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew. Chem. Int. Ed. 58, 11785–11790 (2019).

    Article  CAS  Google Scholar 

  10. Yang, L. et al. Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 5, 71–80 (2022).

    Article  Google Scholar 

  11. Cui, W.-R. et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commun. 11, 436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan, Y. et al. A bio-inspired nano-pocket spatial structure for targeting uranyl capture. Angew. Chem. Int. Ed. 59, 4262–4268 (2020).

    Article  CAS  Google Scholar 

  13. Yang, H. et al. Functionalized iron–nitrogen–carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv. Mater. 33, 2106621 (2021).

    Article  CAS  Google Scholar 

  14. Wang, Z. et al. Constructing an ion pathway for uranium extraction from seawater. Chem 6, 1683–1691 (2020).

    Article  CAS  Google Scholar 

  15. Chi, F., Zhang, S., Wen, J., Xiong, J. & Hu, S. Highly efficient recovery of uranium from seawater using an electrochemical approach. Ind. Eng. Chem. Res. 57, 8078–8084 (2018).

    Article  CAS  Google Scholar 

  16. Gu, B., Liang, L., Dickey, M. J., Yin, X. & Dai, S. Reductive precipitation of uranium(VI) by zero-valent iron. Environ. Sci. Technol. 32, 3366–3373 (1998).

    Article  CAS  Google Scholar 

  17. Fiedor, J. N., Bostick, W. D., Jarabek, R. J. & Farrell, J. Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environ. Sci. Technol. 32, 1466–1473 (1998).

    Article  CAS  Google Scholar 

  18. Zhao, X. et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Ruan, Y. et al. Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron. J. Hazard. Mater. 424, 127119 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X. et al. Controllable shell corrosion of coated nanoscale zero valent iron induces long-term potentiation of its reactivity for uranium removal. Sep. Purif. Technol. 287, 120550 (2022).

    Article  CAS  Google Scholar 

  21. Ling, L. & Zhang, W.-X. Enrichment and encapsulation of uranium with iron nanoparticle. J. Am. Chem. Soc. 137, 2788–2791 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Tsarev, S., Collins, R. N., Ilton, E. S., Fahy, A. & Waite, T. D. The short-term reduction of uranium by nanoscale zero-valent iron (nZVI): role of oxide shell, reduction mechanism and the formation of U(V)-carbonate phases. Environ. Sci. Nano 4, 1304–1313 (2017).

    Article  CAS  Google Scholar 

  23. Hua, Y., Wang, W., Hu, N., Gu, T., Ling, L., & Zhang, W.-x. Enrichment of uranium from wastewater with nanoscale zero-valent iron (nZVI). Environ. Sci. Nano 8, 666–674 (2021).

    Article  CAS  Google Scholar 

  24. Bae, S., Collins, R. N., Waite, T. D. & Hanna, K. Advances in surface passivation of nanoscale zerovalent iron: a critical review. Environ. Sci. Technol. 52, 12010–12025 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Mortazavian, S., An, H., Chun, D. & Moon, J. Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies. Chem. Eng. J. 353, 781–795 (2018).

    Article  CAS  Google Scholar 

  26. Guan, X. et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 75, 224–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Sun, M. et al. Electrochemical–osmotic process for simultaneous recovery of electric energy, water, and metals from wastewater. Environ. Sci. Technol. 54, 8430–8442 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Carvalho, F. & Oliveira, J. Alpha emitters from uranium mining in the environment. J. Radioanal. Nucl. Chem. 274, 167–174 (2007).

    Article  CAS  Google Scholar 

  29. Li, P. et al. Uranium elimination and recovery from wastewater with ligand chelation-enhanced electrocoagulation. Chem. Eng. J. 393, 124819 (2020).

    Article  CAS  Google Scholar 

  30. Yang, P., Li, S., Liu, C., Shen, C. & Liu, X. Water-endurable intercalated graphene oxide adsorbent with highly efficient uranium capture from acidic wastewater. Sep. Purif. Technol. 263, 118364 (2021).

    Article  CAS  Google Scholar 

  31. Cheng, Y. et al. Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chem. Eng. J. 367, 198–207 (2019).

    Article  CAS  Google Scholar 

  32. Li, J. et al. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field. Nucl. Eng. Technol. 48, 744–750 (2016).

    Article  Google Scholar 

  33. Wang, J. et al. Surface water contamination by uranium mining/milling activities in Northern Guangdong Province, China. CLEAN – Soil, Air, Water 40, 1357–1363 (2012).

    Article  CAS  Google Scholar 

  34. Liu, T. et al. Removal and recovery of uranium from groundwater using direct electrochemical reduction method: performance and implications. Environ. Sci. Technol. 53, 14612–14619 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Yuan, K., Renock, D., Ewing, R. C. & Becker, U. Uranium reduction on magnetite: probing for pentavalent uranium using electrochemical methods. Geochim. Cosmochim. Acta 156, 194–206 (2015).

    Article  CAS  Google Scholar 

  36. Yuan, K. et al. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite. Environ. Sci. Technol. 49, 6206–6213 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Wen, Y. et al. Electrochemical reactors for continuous decentralized H2O2 production. Angew. Chem. Int. Ed. 61, e202205972 (2022).

    Article  CAS  Google Scholar 

  38. Corbel, C. et al. Addition versus radiolytic production effects of hydrogen peroxide on aqueous corrosion of UO2. J. Nucl. Mater. 348, 1–17 (2006).

    Article  CAS  Google Scholar 

  39. Guo, X. et al. Energetics of metastudtite and implications for nuclear waste alteration. Proc. Natl Acad. Sci. USA 111, 17737–17742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kubatko, K.-A. H., Helean, K. B., Navrotsky, A. & Burns, P. C. Stability of peroxide-containing uranyl minerals. Science 302, 1191–1193 (2003).

    Article  PubMed  Google Scholar 

  41. Li, X. et al. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery. J. Mater. Chem. A 6, 1390–1396 (2018).

    Article  CAS  Google Scholar 

  42. Li, Q. et al. Silica restricting the sulfur volatilization of nickel sulfide for high-performance lithium-ion batteries. Adv. Energy Mater. 9, 1901153 (2019).

    Article  CAS  Google Scholar 

  43. Zahiri, B. et al. Revealing the role of the cathode–electrolyte interface on solid-state batteries. Nat. Mater. 20, 1392–1400 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

    Article  CAS  Google Scholar 

  45. Ye, Y. et al. Efficient and durable uranium extraction from uranium mine tailings seepage water via a photoelectrochemical method. iScience 24, 103230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Weck, P. F., Kim, E., Jové-Colón, C. F. & Sassani, D. C. Structures of uranyl peroxide hydrates: a first-principles study of studtite and metastudtite. Dalton Trans. 41, 9748–9752 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Walshe, A., Prüßmann, T., Vitova, T. & Baker, R. J. An EXAFS and HR-XANES study of the uranyl peroxides [UO22-O2)(H2O)2nH2O (n = 0, 2) and uranyl (oxy)hydroxide [(UO2)4O(OH)6]·6H2O. Dalton Trans. 43, 4400–4407 (2014).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 42077352 to Y.W.) and the Fundamental Research Funds for the Central Universities (no. 31020200QD024 to Y.Y., no. 3102019JC007 to Y.W. and no. G2021KY0601 to Y.W.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., F.C. and J.J. designed the research; Y.Y. and J.J. conducted the formal analysis; Y.Y., F.C. and Y.W. acquired the funding for the research; J.J., W.H., X.T., Z.Q., Y.C., C.L, Y.F. and S.M. performed the investigation; Y.Y., F.C. and J.J. developed the methodology; Y.Y., F.C. and Y.W. managed the project. Y.Y., F.C., S.M. and Y.W. provided the resources; Y.Y., F.C. and Y.W. supervised the research; Y.Y., F.C. and Y.W. validated the findings; Y.Y. visualized the data; Y.Y. drafted the manuscript; and F.C., Y.W. and Y.F. wrote, reviewed and edited the manuscript.

Corresponding authors

Correspondence to Fan Chen or Yuheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks He Tian, Beniamin Zahiri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–3 and Note 1.

Supplementary Video 1

Morphological change of the CCF electrode surface during SPEC uranium extraction.

Supplementary Video 2

Simultaneous electricity output during SPEC uranium extraction.

Source data

Source Data Fig. 1

Numeric source data.

Source Data Fig. 2

Numeric source data.

Source Data Fig. 3.

Numeric source data.

Source Data Fig. 4

Numeric source data.

Source Data Fig. 6

Numeric source data.

Source Data Fig. 7

Numeric source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Jin, J., Han, W. et al. Spontaneous electrochemical uranium extraction from wastewater with net electrical energy production. Nat Water 1, 887–898 (2023). https://doi.org/10.1038/s44221-023-00134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00134-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing