Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic overlap between multivariate measures of human functional brain connectivity and psychiatric disorders

Abstract

Psychiatric disorders are complex, heritable and highly polygenic. Supported by findings of abnormalities in functional magnetic resonance imaging-based measures of brain connectivity, current theoretical and empirical accounts have conceptualized them as disorders of brain connectivity and dysfunctional integration of brain signaling. However, the extent to which these findings reflect common genetic factors remains unclear. Here we performed a multivariate genome-wide association analysis of functional magnetic resonance imaging-based functional brain connectivity in a sample of 30,701 individuals from the UK Biobank and investigated the shared genetic determinants with eight major psychiatric disorders. The analysis revealed significant genetic overlap between functional brain connectivity and schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, autism spectrum disorder, anxiety and major depression, adding further genetic support for the dysconnectivity hypothesis of psychiatric disorders and identifying potential genetic and functional targets for future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multivariate and univariate architecture of the brain functional connectome highlight a distributed nature of effects across the brain.
Fig. 2: Heritability across edges and nodes.
Fig. 3: Manhattan plots illustrating genetic overlap between disorders and the multivariate functional brain phenotypes.
Fig. 4: Genetic correlation between the connectome and psychiatric disorders.

Similar content being viewed by others

Data availability

Data used in this study are part of the publicly available UK Biobank initiative (https://www.ukbiobank.ac.uk/). Summary statistics for the disorders are publicly available through their respective consortia (Supplementary Table 1). The summary statistics for the multivariate analyses are available on GitHub (https://www.github.com/norment/open-science).

Code availability

Code is publicly available on GitHub (https://www.github.com/norment/open-science).

References

  1. Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).

    PubMed  Google Scholar 

  2. Fullerton, J. M. & Nurnberger, J. I. Polygenic risk scores in psychiatry: will they be useful for clinicians? F1000Research 8, PMC6676506 (2019).

    Google Scholar 

  3. Smoller, J. W. et al. Psychiatric genetics and the structure of psychopathology. Mol. Psychiatry 24, 409–420 (2019).

    PubMed  Google Scholar 

  4. Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162–183 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Google Scholar 

  6. Paulus, M. P. & Thompson, W. K. The challenges and opportunities of small effects: the new normal in academic psychiatry. JAMA Psychiatry 76, 353–354 (2019).

    PubMed  Google Scholar 

  7. Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P. & Mechelli, A. Dysconnectivity in schizophrenia: where are we now? Neurosci. Biobehav. Rev. 35, 1110–1124 (2011).

    PubMed  Google Scholar 

  8. Syan, S. K. et al. Resting-state functional connectivity in individuals with bipolar disorder during clinical remission: a systematic review. J. Psychiatry Neurosci. JPN 43, 298–316 (2018).

    PubMed  Google Scholar 

  9. Hong, S.-J. et al. Atypical functional connectome hierarchy in autism. Nat. Commun. 10, 1022 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  10. Gao, Y. et al. Impairments of large-scale functional networks in attention-deficit/hyperactivity disorder: a meta-analysis of resting-state functional connectivity. Psychol. Med. 49, 2475–2485 (2019).

    PubMed  Google Scholar 

  11. Brakowski, J. et al. Resting state brain network function in major depression—depression symptomatology, antidepressant treatment effects, future research. J. Psychiatr. Res. 92, 147–159 (2017).

    PubMed  Google Scholar 

  12. Akiki, T. J., Averill, C. L. & Abdallah, C. G. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Curr. Psychiatry Rep. 19, 81 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Xu, J. et al. Anxious brain networks: a coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci. Biobehav. Rev. 96, 21–30 (2019).

    PubMed  Google Scholar 

  14. Fuglset, T. S., Landrø, N. I., Reas, D. L. & Rø, Ø. Functional brain alterations in anorexia nervosa: a scoping review. J. Eat. Disord. 4, 32 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Wen, Z. et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414–418 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Devor, A. et al. Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia. Mol. Psychiatry 22, 792–801 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1470 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  18. Trubetskoy, V., Pardiñas, A.F., Qi, T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Lopez de Lara, C. et al. Implication of synapse-related genes in bipolar disorder by linkage and gene expression analyses. Int. J. Neuropsychopharmacol. 13, 1397–1410 (2010).

    PubMed  Google Scholar 

  20. Arnatkeviciute, A., Fulcher, B., Bellgrove, M. & Fornito, A. Where the genome meets the connectome: Understanding how genes shape human brain connectivity. NeuroImage 244, 118570 (2021).

    CAS  PubMed  Google Scholar 

  21. Barabási, D. L. & Barabási, A.-L. A genetic model of the connectome. Neuron 105, 435–445.e5 (2020).

    PubMed  Google Scholar 

  22. Fornito, A. et al. Genetic influences on cost-efficient organization of human cortical functional networks. J. Neurosci. 31, 3261–3270 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00826-4 (2021).

  24. Yang, Z. et al. Genetic and environmental contributions to functional connectivity architecture of the human brain. Cereb. Cortex 26, 2341–2352 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Cao, H., Zhou, H. & Cannon, T. D. Functional connectome-wide associations of schizophrenia polygenic risk. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0699-3 (2020).

  26. Miller, D. R. et al. Posttraumatic stress disorder symptom severity is associated with reduced default mode network connectivity in individuals with elevated genetic risk for psychopathology. Depress. Anxiety 34, 632–640 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hibar, D. P. et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol. Psychiatry 23, 932–942 (2018).

    CAS  PubMed  Google Scholar 

  28. Walton, E. et al. Exploration of shared genetic architecture between subcortical brain volumes and anorexia nervosa. Mol. Neurobiol. 56, 5146–5156 (2019).

    CAS  PubMed  Google Scholar 

  29. Zhao, B. et al. Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706). Mol. Psychiatry https://doi.org/10.1038/s41380-019-0569-z (2019).

  30. van der Meer, D. et al. Understanding the genetic determinants of the brain with MOSTest. Nat. Commun. 11, 3512 (2020).

    PubMed  PubMed Central  ADS  Google Scholar 

  31. Smith, S. M. et al. Network modelling methods for FMRI. NeuroImage 54, 875–891 (2011).

    PubMed  Google Scholar 

  32. Smitha, K. A. et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 30, 305–317 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaufmann, T. et al. Disintegration of sensorimotor brain networks in schizophrenia. Schizophr. Bull. 41, 1326–1335 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Shi, H., Mancuso, N., Spendlove, S. & Pasaniuc, B. Local genetic correlation gives insights into the shared genetic architecture of complex traits. Am. J. Hum. Genet. 101, 737–751 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Smeland, O. B. et al. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum. Genet. 139, 85–94 (2020).

    CAS  PubMed  Google Scholar 

  36. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    CAS  PubMed  Google Scholar 

  37. Duncan, L. et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 174, 850–858 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391–1399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Duncan, L. E. et al. Largest GWAS of PTSD (N = 20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 666–673 (2018).

    CAS  PubMed  Google Scholar 

  43. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    CAS  PubMed  Google Scholar 

  45. Jiang, X. et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat. Commun. 9, 260 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  46. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  47. Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dean, C. et al. Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nat. Neurosci. 12, 767–776 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020).

    CAS  PubMed  Google Scholar 

  51. Friston, K., Brown, H. R., Siemerkus, J. & Stephan, K. E. The dysconnection hypothesis. Schizophr. Res. 176, 83–94 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. van den Heuvel, M. P. & Sporns, O. A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Kaufmann, T. et al. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. NeuroImage 147, 243–252 (2017).

    PubMed  Google Scholar 

  54. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417–2417 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  55. Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C. A. An integrated framework for local genetic correlation analysis. Nat. Gen. 54, 274–282 (2022).

    CAS  Google Scholar 

  56. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaufmann, T. et al. Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nat. Neurosci. 20, 513–515 (2017).

    CAS  PubMed  Google Scholar 

  58. Lynall, M.-E. et al. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30, 9477–9487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rolls, E. T., Cheng, W. & Feng, J. Brain dynamics: the temporal variability of connectivity, and differences in schizophrenia and ADHD. Transl. Psychiatry 11, 70 (2021).

    PubMed  PubMed Central  Google Scholar 

  60. Shadrin, A. A. et al. Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology. NeuroImage. 244, 118603 (2021).

    CAS  PubMed  Google Scholar 

  61. Shadrin, A. A. et al. Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology. NeuroImage 244, 118603 (2021).

    CAS  PubMed  Google Scholar 

  62. Shadrin, A. A. et al. Novel loci associated with attention-deficit/hyperactivity disorder are revealed by leveraging polygenic overlap with educational attainment. J. Am. Acad. Child Adolesc. Psychiatry 57, 86–95 (2018).

    PubMed  Google Scholar 

  63. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).

    PubMed  Google Scholar 

  65. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

    PubMed  Google Scholar 

  66. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004).

    PubMed  Google Scholar 

  67. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

    PubMed  Google Scholar 

  68. Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage 95, 232–247 (2014).

    PubMed  Google Scholar 

  69. Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. NeuroImage 90, 449–468 (2014).

    PubMed  Google Scholar 

  70. Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004).

    PubMed  Google Scholar 

  71. rfMRI_ICA_d25. FMRIB Software Library https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25.html.

  72. Smith, S. M. et al. Functional connectomics from resting-state fMRI. Spec. Issue Connect. 17, 666–682 (2013).

    Google Scholar 

  73. Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M. & Smith, S. M. Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage 21, 1732–1747 (2004).

    PubMed  Google Scholar 

  74. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed  Google Scholar 

  75. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Andreassen, O. A. et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet. 9, e1003455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, J. J., McGue, M., Iacono, W. G. & Chow, C. C. The accuracy of LD Score regression as an estimator of confounding and genetic correlations in genome-wide association studies. Genet. Epidemiol. 42, 783–795 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Loughnan, R. J. et al. Generalization of cortical MOSTest genome-wide associations within and across samples. NeuroImage 263, 119632 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were funded by the Research Council of Norway (#276082 LifespanHealth, #323961 BRAINGAP, #223273 NORMENT, #283798 ERA-NET Neuron SYNSCHIZ, #249795, #298646 and #300767), the South-East Norway Regional Health Authority (2019101, 2019107 and 2020086) and the European Research Council under the European Union’s Horizon2020 Research and Innovation program (ERC Starting Grant #802998), as well as the Horizon2020 Research and Innovation Action Grant CoMorMent (#847776). This research has been conducted using the UK Biobank Resource (access code 27412, https://www.ukbiobank.ac.uk/). This work was performed on the TSD (Tjenester for Sensitive Data) facilities, owned by the University of Oslo, operated and developed by the TSD service group at the University of Oslo, IT-Department (USIT). Computations were also performed on resources provided by UNINETT Sigma2—the National Infrastructure for High Performance Computing and Data Storage in Norway.

Author information

Authors and Affiliations

Authors

Contributions

D.R. and T.K. conceived the study; D.R. analyzed the data with contributions from T.K.; D.R., D.v.d.M., D.A., O.F., A.A.S., R.L., C.C.F., A.M.D., O.A.A., L.T.W. and T.K. contributed with conceptual input on methods and/or interpretation of results; D.R. and T.K. wrote the first draft of the paper, and D.R., D.v.d.M., D.A., O.F., A.A.S., R.L., C.C.F., A.M.D., O.A.A., L.T.W. and T.K. contributed to the final manuscript.

Corresponding authors

Correspondence to Daniel Roelfs or Tobias Kaufmann.

Ethics declarations

Competing interests

D.R., D.v.d.M., D.A., O.F., A.A.S., R.L., C.C.F., L.T.W. and T.K. declare no conflicts of interest. O.A.A. is a consultant to HealthLytix and received speakers honorarium from Lundbeck. A.M.D. is a Founder of and holds equity in CorTechs Labs, Inc., and serves on its Scientific Advisory Board. The terms of this arrangement have been reviewed and approved by UCSD in accordance with its conflict of interest policies.

Peer review

Peer review information

Nature Mental Health thanks Andrew Grotzinger and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1–8.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roelfs, D., van der Meer, D., Alnæs, D. et al. Genetic overlap between multivariate measures of human functional brain connectivity and psychiatric disorders. Nat. Mental Health 2, 189–199 (2024). https://doi.org/10.1038/s44220-023-00190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00190-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing