Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health

Abstract

People spend a remarkable 30–50% of their awake life thinking about something other than what they are currently doing. These experiences of being ‘off-task’ can be described as spontaneous thought when mental dynamics are relatively flexible. Here we review recent neuroscience developments in this area and consider implications for mental well-being and illness. We provide updated overviews of the roles of the default mode network and large-scale network dynamics, and we discuss emerging candidate mechanisms involving hippocampal memory (sharp-wave ripples, replay) and neuromodulatory (noradrenergic and serotonergic) systems. We explore how distinct brain states can be associated with or give rise to adaptive and maladaptive forms of thought linked to distinguishable mental health outcomes. We conclude by outlining new directions in the neuroscience of spontaneous and off-task thought that may clarify mechanisms, lead to personalized biomarkers and facilitate therapy developments toward the goals of better understanding and improving mental health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Number of publications on spontaneous thought and mental health over the past two decades.
Fig. 2: Linking spontaneous thought and off-task thought phenomenology to neural measures with experience sampling.
Fig. 3: Large-scale brain network predictive models of spontaneous fluctuations in experience-sampling ratings.

Similar content being viewed by others

Data availability

The dataset that was generated for Fig. 1 is available at https://github.com/DynamicBrainMind/NatMentHealth2023.

Code availability

The code that was used to generate Fig. 1 is available at https://github.com/DynamicBrainMind/NatMentHealth2023.

References

  1. Kane, M. J. et al. For whom the mind wanders, and when: an experience-sampling study of working memory and executive control in daily life. Psychol. Sci. 18, 614–621 (2007).

    Article  PubMed  Google Scholar 

  2. Killingsworth, M. A. & Gilbert, D. T. A wandering mind is an unhappy mind. Science 330, 932–932 (2010).

    Article  PubMed  Google Scholar 

  3. Klinger, E. & Cox, W. M. Dimensions of thought flow in everyday life. Imagin. Cogn. Pers. 7, 105–128 (1987).

    Article  Google Scholar 

  4. Kane, M. J. et al. For whom the mind wanders, and when, varies across laboratory and daily-life settings. Psychol. Sci. 28, 1271–1289 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seli, P. et al. How pervasive is mind wandering, really? Conscious. Cogn. 66, 74–78 (2018).

    Article  PubMed  Google Scholar 

  6. Baird, B. et al. Inspired by distraction: mind wandering facilitates creative incubation. Psychol. Sci. 23, 1117–1122 (2012).

    Article  PubMed  Google Scholar 

  7. Baird, B., Smallwood, J. & Schooler, J. W. Back to the future: autobiographical planning and the functionality of mind-wandering. Conscious. Cogn. 20, 1604–1611 (2011).

    Article  PubMed  Google Scholar 

  8. Smallwood, J. & Andrews-Hanna, J. Not all minds that wander are lost: the importance of a balanced perspective on the mind-wandering state. Front. Psychol. 4, 441 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schafer, K. M., Lieberman, A., Sever, A. C. & Joiner, T. Prevalence rates of anxiety, depressive, and eating pathology symptoms between the pre- and peri-COVID-19 eras: a meta-analysis. J. Affect. Disord. 298, 364–372 (2022).

    Article  PubMed  Google Scholar 

  10. Zhdanava, M. et al. The prevalence and national burden of treatment-resistant depression and major depressive disorder in the United States. J. Clin. Psychiatry 82, 20m13699 (2021).

    Article  PubMed  Google Scholar 

  11. Bozhilova, N. S., Michelini, G., Kuntsi, J. & Asherson, P. Mind wandering perspective on attention-deficit/hyperactivity disorder. Neurosci. Biobehav. Rev. 92, 464–476 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chaieb, L., Hoppe, C. & Fell, J. Mind wandering and depression: a status report. Neurosci. Biobehav. Rev. 133, 104505 (2022).

    Article  PubMed  Google Scholar 

  13. Marchetti, I., Koster, E. H. W., Klinger, E. & Alloy, L. B. Spontaneous thought and vulnerability to mood disorders: the dark side of the wandering mind. Clin. Psychol. Sci. 4, 835–857 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731 (2016).

    Article  PubMed  Google Scholar 

  15. Kucyi, A. Just a thought: how mind-wandering is represented in dynamic brain connectivity. Neuroimage 180, 505–514 (2018).

    Article  PubMed  Google Scholar 

  16. O’Callaghan, C., Walpola, I. C. & Shine, J. M. Neuromodulation of the mind-wandering brain state: the interaction between neuromodulatory tone, sharp wave-ripples and spontaneous thought. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20190699 (2021).

    Article  PubMed  Google Scholar 

  17. Smallwood, J. et al. The neural correlates of ongoing conscious thought. iScience 24, 102132 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mittner, M., Hawkins, G. E., Boekel, W. & Forstmann, B. U. A neural model of mind wandering. Trends Cogn. Sci. 20, 570–578 (2016).

    Article  PubMed  Google Scholar 

  19. Girn, M., Mills, C., Roseman, L., Carhart-Harris, R. L. & Christoff, K. Updating the dynamic framework of thought: creativity and psychedelics. Neuroimage 213, 116726 (2020).

    Article  PubMed  Google Scholar 

  20. Kam, J. W. Y., Mittner, M. & Knight, R. T. Mind-wandering: mechanistic insights from lesion, tDCS, and iEEG. Trends Cogn. Sci. 26, 268–282 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mildner, J. N. & Tamir, D. I. Spontaneous thought as an unconstrained memory process. Trends Neurosci. 42, 763–777 (2019).

    Article  PubMed  Google Scholar 

  22. Fox, K. C. R., Andrews-Hanna, J. R. & Christoff, K. The neurobiology of self-generated thought from cells to systems: Integrating evidence from lesion studies, human intracranial electrophysiology, neurochemistry, and neuroendocrinology. Neuroscience 335, 134–150 (2016).

    Article  PubMed  Google Scholar 

  23. Fox, K. C. R. & Christoff, K. (eds) The Oxford Handbook of Spontaneous Thought: Mind-wandering, Creativity, and Dreaming (Oxford Univ. Press, 2018).

  24. DuPre, E. & Spreng, R. N. in The Oxford Handbook of Spontaneous Thought (eds Fox, K. C. R. & Christoff, K.) 509–520 (Oxford Univ. Press, 2018).

  25. Seli, P. et al. Mind-wandering as a natural kind: a family-resemblances view. Trends Cogn. Sci. 22, 479–490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Metzinger, T. in The Oxford Handbook of Spontaneous Thought (eds Fox, K. C. R. & Christoff, K.) 97–112 (Oxford Univ. Press, 2018).

  27. Maillet, D. & Schacter, D. L. When the mind wanders: distinguishing stimulus-dependent from stimulus-independent thoughts during incidental encoding in young and older adults. Psychol. Aging 31, 370–379 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Babo-Rebelo, M., Richter, C. G. & Tallon-Baudry, C. Neural responses to heartbeats in the default network encode the self in spontaneous thoughts. J. Neurosci. 36, 7829–7840 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Avitan, L. & Stringer, C. Not so spontaneous: multi-dimensional representations of behaviors and context in sensory areas. Neuron 110, 3064–3075 (2022).

    Article  PubMed  Google Scholar 

  30. Smallwood, J. Distinguishing how from why the mind wanders: a process-occurrence framework for self-generated mental activity. Psychol. Bull. 139, 519–535 (2013).

    Article  PubMed  Google Scholar 

  31. Mills, C., Raffaelli, Q., Irving, Z. C., Stan, D. & Christoff, K. Is an off-task mind a freely-moving mind? Examining the relationship between different dimensions of thought. Conscious. Cogn. 58, 20–33 (2018).

    Article  PubMed  Google Scholar 

  32. Mills, C., Porter, A. R., Andrews-Hanna, J. R., Christoff, K. & Colby, A. How task-unrelated and freely moving thought relate to affect: evidence for dissociable patterns in everyday life. Emotion 21, 1029–1040 (2021).

    Article  PubMed  Google Scholar 

  33. Turnbull, A. et al. Reductions in task positive neural systems occur with the passage of time and are associated with changes in ongoing thought. Sci. Rep. 10, 9912 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Christoff, K. et al. Mind-wandering as a scientific concept: cutting through the definitional haze. Trends Cogn. Sci. 22, 957–959 (2018).

    Article  PubMed  Google Scholar 

  35. McVay, J. C. & Kane, M. J. Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychol. Bull. 136, 188–197 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mace, J. H. Involuntary autobiographical memory chains: implications for autobiographical memory organization. Front. Psychiatry 5, 183 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. McVay, J. C. & Kane, M. J. Conducting the train of thought: working memory capacity, goal neglect, and mind wandering in an executive-control task. J. Exp. Psychol. Learn. Mem. Cogn. 35, 196–204 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M. & D’Argembeau, A. Mind-wandering: phenomenology and function as assessed with a novel experience sampling method. Acta Psychol. 136, 370–381 (2011).

    Article  Google Scholar 

  39. Smallwood, J. M., Baracaia, S. F., Lowe, M. & Obonsawin, M. Task unrelated thought whilst encoding information. Conscious. Cogn. 12, 452–484 (2003).

    Article  PubMed  Google Scholar 

  40. Smallwood, J., Fishman, D. J. & Schooler, J. W. Counting the cost of an absent mind: mind wandering as an underrecognized influence on educational performance. Psychon. Bull. Rev. 14, 230–236 (2007).

    Article  PubMed  Google Scholar 

  41. Smallwood, J. Mind-wandering while reading: attentional decoupling, mindless reading and the cascade model of inattention. Lang. Linguist. Compass 5, 63–77 (2011).

    Article  Google Scholar 

  42. Galéra, C. et al. Mind wandering and driving: responsibility case-control study. Br. Med. J. 345, e8105 (2012).

    Article  Google Scholar 

  43. Robison, M. K., Gath, K. I. & Unsworth, N. The neurotic wandering mind: an individual differences investigation of neuroticism, mind-wandering, and executive control. Q. J. Exp. Psychol. (Hove) 70, 649–663 (2017).

    Article  PubMed  Google Scholar 

  44. Seli, P., Risko, E. F., Purdon, C. & Smilek, D. Intrusive thoughts: linking spontaneous mind wandering and OCD symptomatology. Psychol. Res. 2, 392–398 (2016).

    Google Scholar 

  45. Smallwood, J., Fitzgerald, A., Miles, L. K. & Phillips, L. H. Shifting moods, wandering minds: negative moods lead the mind to wander. Emotion 9, 271–276 (2009).

    Article  PubMed  Google Scholar 

  46. Engert, V., Smallwood, J. & Singer, T. Mind your thoughts: associations between self-generated thoughts and stress-induced and baseline levels of cortisol and alpha-amylase. Biol. Psychol. 103, 283–291 (2014).

    Article  PubMed  Google Scholar 

  47. Cárdenas-Egúsquiza, A. L. & Berntsen, D. Sleeping poorly is robustly associated with a tendency to engage in spontaneous waking thought. Conscious. Cogn. 105, 103401 (2022).

    Article  PubMed  Google Scholar 

  48. Hoffmann, F., Banzhaf, C., Kanske, P., Bermpohl, F. & Singer, T. Where the depressed mind wanders: self-generated thought patterns as assessed through experience sampling as a state marker of depression. J. Affect. Disord. 198, 127–134 (2016).

    Article  PubMed  Google Scholar 

  49. Smith, A. C., Brosowsky, N. P., Caron, E. E., Seli, P. & Smilek, D. Examining the relation between mind wandering and unhealthy eating behaviours. Pers. Individ. Dif. 200, 111908 (2023).

    Article  Google Scholar 

  50. Seli, P., Smallwood, J., Cheyne, J. A. & Smilek, D. On the relation of mind wandering and ADHD symptomatology. Psychon. Bull. Rev. 22, 629–636 (2015).

    Article  PubMed  Google Scholar 

  51. Vatansever, D., Bozhilova, N. S., Asherson, P. & Smallwood, J. The devil is in the detail: exploring the intrinsic neural mechanisms that link attention-deficit/hyperactivity disorder symptomatology to ongoing cognition. Psychol. Med. 49, 1185–1194 (2019).

    Article  PubMed  Google Scholar 

  52. Fox, K. C. R. et al. Affective neuroscience of self-generated thought. Ann. N. Y. Acad. Sci. 1426, 25–51 (2018).

    Article  Google Scholar 

  53. Franklin, M. S. et al. The silver lining of a mind in the clouds: interesting musings are associated with positive mood while mind-wandering. Front. Psychol. 4, 583 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Welz, A., Reinhard, I., Alpers, G. W. & Kuehner, C. Happy thoughts: mind wandering affects mood in daily life. Mindfulness 9, 332–343 (2018).

    Article  Google Scholar 

  55. Smallwood, J. & O’Connor, R. C. Imprisoned by the past: unhappy moods lead to a retrospective bias to mind wandering. Cogn. Emot. 25, 1481–1490 (2011).

    Article  PubMed  Google Scholar 

  56. Ruby, F. J. M., Smallwood, J., Engen, H. & Singer, T. How self-generated thought shapes mood—the relation between mind-wandering and mood depends on the socio-temporal content of thoughts. PLoS ONE 8, e77554 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Webb, C. A. et al. Spontaneous thought characteristics are differentially related to heightened negative affect versus blunted positive affect in adolescents: an experience sampling study. JCPP Adv. 2, e12110 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stawarczyk, D. in The Oxford Handbook of Spontaneous Thought (eds Fox, K. C. R. & Christoff, K.) 193–214 (Oxford Univ. Press, 2018).

  59. Mildner, J. N. & Tamir, D. I. The people around you are inside your head: social context shapes spontaneous thought. J. Exp. Psychol. Gen. 150, 2375–2386 (2021).

    Article  PubMed  Google Scholar 

  60. Ji, J. L., Holmes, E. A., MacLeod, C. & Murphy, F. C. Spontaneous cognition in dysphoria: reduced positive bias in imagining the future. Psychol. Res. 83, 817–831 (2019).

    Article  PubMed  Google Scholar 

  61. Tulving, E. Multiple memory systems and consciousness. Hum. Neurobiol. 6, 67–80 (1987).

    PubMed  Google Scholar 

  62. Gable, S. L., Hopper, E. A. & Schooler, J. W. When the muses strike: creative ideas of physicists and writers routinely occur during mind wandering. Psychol. Sci. 30, 396–404 (2019).

    Article  PubMed  Google Scholar 

  63. Thiemann, R. F., Mills, C. & Kam, J. W. Y. Differential relationships between thought dimensions and momentary affect in daily life. Psychol. Res. https://doi.org/10.1007/s00426-022-01766-9 (2022).

  64. Turnbull, A. et al. Left dorsolateral prefrontal cortex supports context-dependent prioritisation of off-task thought. Nat. Commun. 10, 3816 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ho, N. S. P. et al. Facing up to the wandering mind: patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli. Neuroimage 214, 116765 (2020).

    Article  PubMed  Google Scholar 

  66. Gusnard, D. A., Raichle, M. E. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694 (2001).

    Article  PubMed  Google Scholar 

  67. Ingvar, D. H. ‘Hyperfrontal’ distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol. Scand. 60, 12–25 (1979).

    Article  PubMed  Google Scholar 

  68. Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995).

    Article  PubMed  Google Scholar 

  69. Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W. & Bandettini, P. A. How to interpret resting-state fMRI: ask your participants. J. Neurosci. 41, 1130–1141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. McGuire, P. K., Paulesu, E., Frackowiak, R. S. & Frith, C. D. Brain activity during stimulus independent thought. Neuroreport 7, 2095–2099 (1996).

    PubMed  Google Scholar 

  71. Binder, J. R. et al. Conceptual processing during the conscious resting state. A functional MRI study. J. Cogn. Neurosci. 11, 80–95 (1999).

    Article  PubMed  Google Scholar 

  72. Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Christoff, K., Gordon, A. M., Smallwood, J., Smith, R. & Schooler, J. W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl Acad. Sci. USA 106, 8719–8724 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lehmann, D., Henggeler, B., Koukkou, M. & Michel, C. M. Source localization of brain electric field frequency bands during conscious, spontaneous, visual imagery and abstract thought. Cogn. Brain Res. 1, 203–210 (1993).

    Article  Google Scholar 

  75. Weinstein, Y., De Lima, H. J. & van der Zee, T. Are you mind-wandering, or is your mind on task? The effect of probe framing on mind-wandering reports. Psychon. Bull. Rev. 25, 754–760 (2018).

    Article  PubMed  Google Scholar 

  76. Jordão, M., Ferreira-Santos, F., Pinho, M. S. & St Jacques, P. L. Meta-analysis of aging effects in mind wandering: methodological and sociodemographic factors. Psychol. Aging 34, 531–544 (2019).

    Article  PubMed  Google Scholar 

  77. Martinon, L. M., Smallwood, J., McGann, D., Hamilton, C. & Riby, L. M. The disentanglement of the neural and experiential complexity of self-generated thoughts: a users guide to combining experience sampling with neuroimaging data. Neuroimage 192, 15–25 (2019).

    Article  PubMed  Google Scholar 

  78. Ellamil, M. et al. Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. Neuroimage 136, 186–196 (2016).

    Article  PubMed  Google Scholar 

  79. Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E. & Barsalou, L. W. Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59, 750–760 (2012).

    Article  PubMed  Google Scholar 

  80. Kim, B., Andrews-Hanna, J. R., Han, J., Lee, E. & Woo, C.-W. When self comes to a wandering mind: brain representations and dynamics of self-generated concepts in spontaneous thought. Sci. Adv. 8, eabn8616 (2022).

    Article  PubMed Central  Google Scholar 

  81. Li, H.-X. et al. Neural representations of self-generated thought during think-aloud fMRI. Neuroimage 265, 119775 (2022).

    Article  PubMed  Google Scholar 

  82. Berntsen, D., Staugaard, S. R. & Sørensen, L. M. T. Why am I remembering this now? Predicting the occurrence of involuntary (spontaneous) episodic memories. J. Exp. Psychol. Gen. 142, 426–444 (2013).

    Article  PubMed  Google Scholar 

  83. Hall, S. A., Brodar, K. E., LaBar, K. S., Berntsen, D. & Rubin, D. C. Neural responses to emotional involuntary memories in posttraumatic stress disorder: differences in timing and activity. Neuroimage Clin. 19, 793–804 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schlagman, S. & Kvavilashvili, L. Involuntary autobiographical memories in and outside the laboratory: how different are they from voluntary autobiographical memories? Mem. Cognit. 36, 920–932 (2008).

    Article  PubMed  Google Scholar 

  85. Tusche, A., Smallwood, J., Bernhardt, B. C. & Singer, T. Classifying the wandering mind: revealing the affective content of thoughts during task-free rest periods. Neuroimage 97, 107–116 (2014).

    Article  PubMed  Google Scholar 

  86. Sormaz, M. et al. Default mode network can support the level of detail in experience during active task states. Proc. Natl Acad. Sci. USA 115, 9318–9323 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hung, S.-M. & Hsieh, P.-J. Mind wandering in sensory cortices. Neuroimage Rep. 2, 100073 (2022).

    Article  Google Scholar 

  88. Kam, J. W. Y. et al. Distinct electrophysiological signatures of task-unrelated and dynamic thoughts. Proc. Natl Acad. Sci. USA 118, e2011796118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Andrillon, T., Burns, A., Mackay, T., Windt, J. & Tsuchiya, N. Predicting lapses of attention with sleep-like slow waves. Nat. Commun. 12, 3657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mortaheb, S. et al. Mind blanking is a distinct mental state linked to a recurrent brain profile of globally positive connectivity during ongoing mentation. Proc. Natl Acad. Sci. USA 119, e2200511119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bozhilova, N., Kuntsi, J., Rubia, K., Asherson, P. & Michelini, G. Event-related brain dynamics during mind wandering in attention-deficit/hyperactivity disorder: an experience-sampling approach. Neuroimage Clin. 35, 103068 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kucyi, A. et al. Prediction of stimulus-independent and task-unrelated thought from functional brain networks. Nat. Commun. 12, 1793 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).

    Article  PubMed  Google Scholar 

  94. Tomescu, M. I. et al. Spontaneous thought and microstate activity modulation by social imitation. Neuroimage 249, 118878 (2022).

    Article  PubMed  Google Scholar 

  95. Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997).

    Article  PubMed  Google Scholar 

  96. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    Article  PubMed  Google Scholar 

  98. Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29–52 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Andrews-Hanna, J. R., Reidler, J. S., Huang, C. & Buckner, R. L. Evidence for the default network’s role in spontaneous cognition. J. Neurophysiol. 104, 322–335 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Dixon, M. L. et al. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147, 632–649 (2017).

    Article  PubMed  Google Scholar 

  102. Kucyi, A. et al. Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations. Nat. Commun. 11, 325 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  104. Stawarczyk, D., Majerus, S., Maquet, P. & D’Argembeau, A. Neural correlates of ongoing conscious experience: both task-unrelatedness and stimulus-independence are related to default network activity. PLoS ONE 6, e16997 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kucyi, A., Salomons, T. V. & Davis, K. D. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks. Proc. Natl Acad. Sci. USA 110, 18692–18697 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sonuga-Barke, E. J. S. & Castellanos, F. X. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci. Biobehav. Rev. 31, 977–986 (2007).

    Article  PubMed  Google Scholar 

  107. Whitfield-Gabrieli, S. & Ford, J. M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76 (2012).

    Article  PubMed  Google Scholar 

  108. Beaty, R. E., Benedek, M., Silvia, P. J. & Schacter, D. L. Creative cognition and brain network dynamics. Trends Cogn. Sci. 20, 87–95 (2016).

    Article  PubMed  Google Scholar 

  109. Kucyi, A., Esterman, M., Riley, C. S. & Valera, E. M. Spontaneous default network activity reflects behavioral variability independent of mind-wandering. Proc. Natl Acad. Sci. USA 113, 13899–13904 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Groot, J. M. et al. Probing the neural signature of mind wandering with simultaneous fMRI-EEG and pupillometry. Neuroimage 224, 117412 (2021).

    Article  PubMed  Google Scholar 

  111. Murphy, C. et al. Distant from input: evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. Neuroimage 171, 393–401 (2018).

    Article  PubMed  Google Scholar 

  112. Konishi, M., McLaren, D. G., Engen, H. & Smallwood, J. Shaped by the past: the default mode network supports cognition that is independent of immediate perceptual input. PLoS ONE 10, e0132209 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gratton, C. et al. Functional brain networks are dominated by Stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452.e5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Harmelech, T. & Malach, R. Neurocognitive biases and the patterns of spontaneous correlations in the human cortex. Trends Cogn. Sci. 17, 606–615 (2013).

    Article  PubMed  Google Scholar 

  115. Kucyi, A. & Davis, K. D. Dynamic functional connectivity of the default mode network tracks daydreaming. Neuroimage 100, 471–480 (2014).

    Article  PubMed  Google Scholar 

  116. Godwin, C. A. et al. Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering. Neuropsychologia 103, 140–153 (2017).

    Article  PubMed  Google Scholar 

  117. Zhang, J. et al. What have we really learned from functional connectivity in clinical populations? Neuroimage 242, 118466 (2021).

    Article  PubMed  Google Scholar 

  118. Liu, X. & Duyn, J. H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc. Natl Acad. Sci. USA 110, 4392–4397 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Karapanagiotidis, T. et al. The psychological correlates of distinct neural states occurring during wakeful rest. Sci. Rep. 10, 21121 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mittner, M. et al. When the brain takes a break: a model-based analysis of mind wandering. J. Neurosci. 34, 16286–16295 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).

    Article  PubMed  Google Scholar 

  122. Martin, C. G., He, B. J. & Chang, C. State-related neural influences on fMRI connectivity estimation. Neuroimage 244, 118590 (2021).

    Article  PubMed  Google Scholar 

  123. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Axelrod, V., Rees, G. & Bar, M. The default network and the combination of cognitive processes that mediate self-generated thought. Nat. Hum. Behav. 1, 896–910 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Andrews-Hanna, J. R. & Grilli, M. D. Mapping the imaginative mind: charting new paths forward. Curr. Dir. Psychol. Sci. 30, 82–89 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471.e5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. DiNicola, L. M., Braga, R. M. & Buckner, R. L. Parallel distributed networks dissociate episodic and social functions within the individual. J. Neurophysiol. 123, 1144–1179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  PubMed  Google Scholar 

  130. Ranganath, C. & Ritchey, M. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 13, 713–726 (2012).

    Article  PubMed  Google Scholar 

  131. Konu, D. et al. A role for the ventromedial prefrontal cortex in self-generated episodic social cognition. Neuroimage 218, 116977 (2020).

    Article  PubMed  Google Scholar 

  132. Ho, N. S. P. et al. Individual variation in patterns of task focused, and detailed, thought are uniquely associated within the architecture of the medial temporal lobe. Neuroimage 202, 116045 (2019).

    Article  PubMed  Google Scholar 

  133. Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).

    Article  PubMed  Google Scholar 

  134. Andrews-Hanna, J. R. et al. The conceptual building blocks of everyday thought: tracking the emergence and dynamics of ruminative and nonruminative thinking. J. Exp. Psychol. Gen. 151, 628–642 (2022).

    Article  PubMed  Google Scholar 

  135. Kajimura, S., Kochiyama, T., Abe, N. & Nomura, M. Challenge to unity: relationship between hemispheric asymmetry of the default mode network and mind wandering. Cereb. Cortex 29, 2061–2071 (2019).

    Article  PubMed  Google Scholar 

  136. Bertossi, E., Peccenini, L., Solmi, A., Avenanti, A. & Ciaramelli, E. Transcranial direct current stimulation of the medial prefrontal cortex dampens mind-wandering in men. Sci. Rep. 7, 16962 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Filmer, H. L., Marcus, L. H. & Dux, P. E. Stimulating task unrelated thoughts: tDCS of prefrontal and parietal cortices leads to polarity specific increases in mind wandering. Neuropsychologia 151, 107723 (2021).

    Article  PubMed  Google Scholar 

  138. Mowlem, F. D. et al. Validation of the mind excessively wandering scale and the relationship of mind wandering to impairment in adult ADHD. J. Atten. Disord. 23, 624–634 (2019).

    Article  PubMed  Google Scholar 

  139. Bertossi, E. & Ciaramelli, E. Ventromedial prefrontal damage reduces mind-wandering and biases its temporal focus. Soc. Cogn. Affect. Neurosci. 11, 1783–1791 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. McCormick, C., Rosenthal, C. R., Miller, T. D. & Maguire, E. A. Mind-wandering in people with hippocampal damage. J. Neurosci. 38, 2745–2754 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. O’Callaghan, C., Shine, J. M., Hodges, J. R., Andrews-Hanna, J. R. & Irish, M. Hippocampal atrophy and intrinsic brain network dysfunction relate to alterations in mind wandering in neurodegeneration. Proc. Natl Acad. Sci. USA 116, 3316–3321 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Chou, T., Hooley, J. M. & Camprodon, J. A. Transcranial direct current stimulation of default mode network parietal nodes decreases negative mind-wandering about the past. Cognit. Ther. Res. 44, 10–20 (2020).

    Article  PubMed  Google Scholar 

  143. Dixon, M. L. et al. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc. Natl Acad. Sci. USA 115, E1598–E1607 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Smallwood, J., Brown, K., Baird, B. & Schooler, J. W. Cooperation between the default mode network and the frontal–parietal network in the production of an internal train of thought. Brain Res. 1428, 60–70 (2012).

    Article  PubMed  Google Scholar 

  145. Axelrod, V., Rees, G., Lavidor, M. & Bar, M. Increasing propensity to mind-wander with transcranial direct current stimulation. Proc. Natl Acad. Sci. USA 112, 3314–3319 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Boayue, N. M. et al. The interplay between executive control, behavioural variability and mind wandering: Insights from a high-definition transcranial direct-current stimulation study. Eur. J. Neurosci. 53, 1498–1516 (2021).

    Article  PubMed  Google Scholar 

  147. Uddin, L. Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61 (2015).

    Article  PubMed  Google Scholar 

  148. Zerbi, V. et al. Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron 103, 702–718.e5 (2019).

    Article  PubMed  Google Scholar 

  149. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Webb, C. A. et al. Mind-wandering in adolescents predicts worse affect and is linked to aberrant default mode network–salience network connectivity. J. Am. Acad. Child Adolesc. Psychiatry 60, 377–387 (2021).

    Article  PubMed  Google Scholar 

  151. Lydon-Staley, D. M. et al. Repetitive negative thinking in daily life and functional connectivity among default mode, fronto-parietal, and salience networks. Transl. Psychiatry 9, 234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Schooler, J. W. et al. Meta-awareness, perceptual decoupling and the wandering mind. Trends Cogn. Sci. 15, 319–326 (2011).

    PubMed  Google Scholar 

  153. Zhang, M. et al. Perceptual coupling and decoupling of the default mode network during mind-wandering and reading. Elife 11, e74011 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Shen, X. et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 12, 506–518 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kirkby, L. A. et al. An amygdala–hippocampus subnetwork that encodes variation in human mood. Cell 175, 1688–1700.e14 (2018).

    Article  PubMed  Google Scholar 

  157. Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001).

    Article  PubMed  Google Scholar 

  158. Aru, J., Drüke, M., Pikamäe, J. & Larkum, M. E. Mental navigation and the neural mechanisms of insight. Trends Neurosci. 46, 100–109 (2023).

    Article  PubMed  Google Scholar 

  159. Axmacher, N., Elger, C. E. & Fell, J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 131, 1806–1817 (2008).

    Article  PubMed  Google Scholar 

  160. Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365, eaax1030 (2019).

    Article  PubMed  Google Scholar 

  161. Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. Human replay spontaneously reorganizes experience. Cell 178, 640–652.e14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    Article  PubMed Central  Google Scholar 

  163. Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Tambini, A. & Davachi, L. Persistence of hippocampal multivoxel patterns into postencoding rest is related to memory. Proc. Natl Acad. Sci. USA 110, 19591–19596 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Norman, Y., Raccah, O., Liu, S., Parvizi, J. & Malach, R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron 109, 2767–2780.e5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kaplan, R. et al. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr. Biol. 26, 686–691 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Higgins, C. et al. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron 109, 882–893.e7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kaefer, K., Stella, F., McNaughton, B. L. & Battaglia, F. P. Replay, the default mode network and the cascaded memory systems model. Nat. Rev. Neurosci. 23, 628–640 (2022).

    Article  PubMed  Google Scholar 

  169. Deeb, W. et al. Fornix-region deep brain stimulation-induced memory flashbacks in Alzheimer’s disease. N. Engl. J. Med. 381, 783–785 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Nour, M. M., Liu, Y., Arumuham, A., Kurth-Nelson, Z. & Dolan, R. J. Impaired neural replay of inferred relationships in schizophrenia. Cell 184, 4315–4328.e17 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Heller, A. S. & Bagot, R. C. Is hippocampal replay a mechanism for anxiety and depression? JAMA Psychiatry 77, 431–432 (2020).

    Article  PubMed  Google Scholar 

  172. McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    Article  PubMed  Google Scholar 

  174. Joshi, S., Li, Y., Kalwani, R. M. & Gold, J. I. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234 (2016).

    Article  PubMed  Google Scholar 

  175. Reimer, J. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7, 13289 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Megemont, M., McBurney-Lin, J. & Yang, H. Pupil diameter is not an accurate real-time readout of locus coeruleus activity. Elife 11, e70510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Smallwood, J. et al. Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLoS ONE 6, e18298 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Unsworth, N. & Robison, M. K. Tracking arousal state and mind wandering with pupillometry. Cogn. Affect. Behav. Neurosci. 18, 638–664 (2018).

    Article  PubMed  Google Scholar 

  179. Konishi, M., Brown, K., Battaglini, L. & Smallwood, J. When attention wanders: pupillometric signatures of fluctuations in external attention. Cognition 168, 16–26 (2017).

    Article  PubMed  Google Scholar 

  180. Kucyi, A. & Parvizi, J. Pupillary dynamics link spontaneous and task-evoked activations recorded directly from human insula. J. Neurosci. 40, 6207–6218 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Schindler, E. A. D. & D’Souza, D. C. The therapeutic potential of psychedelics. Science 378, 1051–1053 (2022).

    Article  PubMed  Google Scholar 

  182. Madsen, M. K. et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44, 1328–1334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Spitzer, M. et al. Increased activation of indirect semantic associations under psilocybin. Biol. Psychiatry 39, 1055–1057 (1996).

    Article  PubMed  Google Scholar 

  184. Carhart-Harris, R. L. et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl Acad. Sci. USA 109, 2138–2143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kwan, A. C., Olson, D. E., Preller, K. H. & Roth, B. L. The neural basis of psychedelic action. Nat. Neurosci. 25, 1407–1419 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Preller, K. H. et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife 7, e35082 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Müller, F. et al. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr. Scand. 136, 648–657 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Müller, F., Dolder, P. C., Schmidt, A., Liechti, M. E. & Borgwardt, S. Altered network hub connectivity after acute LSD administration. Neuroimage Clin. 18, 694–701 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Mason, N. L. et al. Spontaneous and deliberate creative cognition during and after psilocybin exposure. Transl. Psychiatry 11, 209 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lebedev, A. V. et al. Finding the self by losing the self: neural correlates of ego-dissolution under psilocybin. Hum. Brain Mapp. 36, 3137–3153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Tagliazucchi, E. et al. Increased global functional connectivity correlates with LSD-induced ego dissolution. Curr. Biol. 26, 1043–1050 (2016).

    Article  PubMed  Google Scholar 

  192. Raffaelli, Q. et al. The think aloud paradigm reveals differences in the content, dynamics and conceptual scope of resting state thought in trait brooding. Sci. Rep. 11, 19362 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Bellana, B., Mahabal, A. & Honey, C. J. Narrative thinking lingers in spontaneous thought. Nat. Commun. 13, 4585 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Li, H.-X. et al. Exploring self-generated thoughts in a resting state with natural language processing. Behav. Res. Methods 54, 1725–1743 (2022).

    Article  PubMed  Google Scholar 

  195. Kühn, S., Fernyhough, C., Alderson-Day, B. & Hurlburt, R. T. Inner experience in the scanner: can high fidelity apprehensions of inner experience be integrated with fMRI? Front. Psychol. 5, 1393 (2014).

    PubMed  PubMed Central  Google Scholar 

  196. Siclari, F. et al. The neural correlates of dreaming. Nat. Neurosci. 20, 872–878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tambini, A. & Davachi, L. Awake reactivation of prior experiences consolidates memories and biases cognition. Trends Cogn. Sci. 23, 876–890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Van den Driessche, C. et al. Attentional lapses in attention-deficit/hyperactivity disorder: blank rather than wandering thoughts. Psychol. Sci. 28, 1375–1386 (2017).

    Article  PubMed  Google Scholar 

  199. Watts, F. N., MacLeod, A. K. & Morris, L. Associations between phenomenal and objective aspects of concentration problems in depressed patients. Br. J. Psychol. 79, 241–250 (1988).

    Article  PubMed  Google Scholar 

  200. Kawagoe, T., Onoda, K. & Yamaguchi, S. The neural correlates of ‘mind blanking’: when the mind goes away. Hum. Brain Mapp. 40, 4934–4940 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Fell, J. What is mind blanking: a conceptual clarification. Eur. J. Neurosci. 56, 4837–4842 (2022).

    Article  PubMed  Google Scholar 

  202. Borchers, S., Himmelbach, M., Logothetis, N. & Karnath, H.-O. Direct electrical stimulation of human cortex — the gold standard for mapping brain functions? Nat. Rev. Neurosci. 13, 63–70 (2011).

    Article  PubMed  Google Scholar 

  203. Holtzheimer, P. E. & Mayberg, H. S. Deep brain stimulation for psychiatric disorders. Annu. Rev. Neurosci. 34, 289–307 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Curot, J. et al. Memory scrutinized through electrical brain stimulation: a review of 80 years of experiential phenomena. Neurosci. Biobehav. Rev. 78, 161–177 (2017).

    Article  PubMed  Google Scholar 

  205. Fox, K. C. R. et al. Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain. Nat. Hum. Behav. 4, 1039–1052 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Parvizi, J. et al. Altered sense of self during seizures in the posteromedial cortex. Proc. Natl Acad. Sci. USA 118, e2100522118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Shofty, B. et al. The default network is causally linked to creative thinking. Mol. Psychiatry 27, 1848–1854 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Mental Health (NIMH) of the National Institutes of Health (NIH) under award numbers R21MH127384 (to A.K.), R21MH129630 (to A.K. and S.W.-G.) and R01MH125414 (J.R.A.-H.). J.W.Y.K. was supported by a Natural Sciences and Engineering Research Council (NSERC) discovery grant.

Author information

Authors and Affiliations

Authors

Contributions

A.K. completed the initial draft. J.W.Y.K., J.R.A.-H., K.C. and S.W.-G. contributed to the writing, conceptualization and editing.

Corresponding author

Correspondence to Aaron Kucyi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Ioana Carcea, Jonathan Smallwood and the other, anonymous reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucyi, A., Kam, J.W.Y., Andrews-Hanna, J.R. et al. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. Nat. Mental Health 1, 827–840 (2023). https://doi.org/10.1038/s44220-023-00133-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00133-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research