Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Personality traits and brain health: a large prospective cohort study

Abstract

Personality has recently emerged as a critical determinant for multiple health outcomes. However, the evidence is less established for brain health, and the underlying mechanisms remain unclear. Here, utilizing data of 298,259 participants from the UK Biobank, five personality traits, including warmth, diligence, nervousness, sociability and curiosity, were constructed, and their relationships with brain disorders were examined with Cox regression and Mendelian randomization analyses. The results revealed consistent deleterious roles of nervousness, while the protective roles of warmth, diligence, sociability and curiosity in brain disorders were emphasized. Neuroimaging analyses highlighted the associations of personality traits with critical brain regions including the frontal cortex, temporal cortex and thalamus. Exploratory analyses revealed the mediating effects of neutrophil and high-density lipoprotein, indicating the contribution of inflammation and lipid metabolism to the associations between personality and brain health. This study provides a foundation for personality-oriented interventions in brain health, and it is necessary to validate our findings in other populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study workflow.
Fig. 2: Risk for incident brain disorders according to personality traits and clusters.
Fig. 3: The causal relationship between personality traits and brain disorders.
Fig. 4: Associations of personality traits with brain structures.
Fig. 5: Structural equation model results.

Similar content being viewed by others

Data availability

The main data used in this study were accessed from the publicly available UK Biobank Resource under application number 19542, which cannot be shared with other investigators. The GWAS data of brain disorders were retrieved from the exogenous population which is publicly available (dementia: https://gwas.mrcieu.ac.uk/datasets/finn-b-F5_DEMENTIA/, PD: https://gwas.mrcieu.ac.uk/datasets/ieu-a-812/, stroke: http://megastroke.org/download.html, schizophrenia: https://pgc.unc.edu/for-researchers/download-results/, bipolar affective disorder: https://pgc.unc.edu/for-researchers, and MDD: https://pgc.unc.edu/for-researchers/download-results/).

Code availability

Packages including survival 3.2, TwoSampleMR and lavaan 0.8 in R version 4.0.0 were used to perform Cox proportional hazards regression model, MR study and structural equation model, respectively. PLINK 2.0 was used to perform genome-wide association analysis and PRSice2 was used to calculate the PRS. Freesurfer v6.0 and FSL 6.0 were used to process the imaging data, and MATLAB 2018b was used to perform corresponding linear association analysis. Scripts used to perform the analyses are available at https://github.com/yuzhulineu/UKB_personality.

References

  1. Optimizing Brain Health Across the Life Course: WHO Position Paper (World Health Organization, 2022).

  2. World Mental Health Report: Transforming Mental Health for All (World Health Organization, 2022).

  3. Taquet, M. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry https://doi.org/10.1016/s2215-0366(22)00260-7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Y. R. et al. Modifiable risk factors for incident dementia and cognitive impairment: an umbrella review of evidence. J. Affect. Disord. 314, 160–167 (2022).

    Article  PubMed  Google Scholar 

  5. Ascherio, A. & Schwarzschild, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272 (2016).

    Article  PubMed  Google Scholar 

  6. Boehme, A. K., Esenwa, C. & Elkind, M. S. Stroke risk factors, genetics, and prevention. Circ. Res. 120, 472–495 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aschwanden, D., Sutin, A. R., Luchetti, M., Stephan, Y. & Terracciano, A. Personality and dementia risk in England and Australia. GeroPsych 33, 197–208 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sieurin, J. et al. Personality traits and the risk for Parkinson disease: a prospective study. Eur. J. Epidemiol. 31, 169–175 (2016).

    Article  PubMed  Google Scholar 

  9. Lonnqvist, J. E. et al. Premorbid personality factors in schizophrenia and bipolar disorder: results from a large cohort study of male conscripts. J. Abnorm. Psychol. 118, 418–423 (2009).

    Article  PubMed  Google Scholar 

  10. McAdams, D. P. & Olson, B. D. Personality development: continuity and change over the life course. Annu. Rev. Psychol. 61, 517–542 (2010).

    Article  PubMed  Google Scholar 

  11. Newton-Howes, G., Clark, L. A. & Chanen, A. Personality disorder across the life course. Lancet 385, 727–734 (2015).

    Article  PubMed  Google Scholar 

  12. Roberts, B. W. & Yoon, H. J. Personality psychology. Annu. Rev. Psychol. 73, 489–516 (2022).

    Article  PubMed  Google Scholar 

  13. John, O. & Srivastava, S. in Handbook of Personality: Theory and Research (eds Pervin, L. A. & John, O. P.) 102–138 (Guilford Press, 1999).

  14. Aschwanden, D. et al. Is personality associated with dementia risk? A meta-analytic investigation. Ageing Res. Rev. 67, 101269 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Santangelo, G. et al. Personality and Parkinson’s disease: a meta-analysis. Parkinsonism Relat. Disord. 49, 67–74 (2018).

    Article  PubMed  Google Scholar 

  16. DeYoung, C. G. et al. Testing predictions from personality neuroscience. Brain structure and the big five. Psychol. Sci. 21, 820–828 (2010).

    Article  PubMed  Google Scholar 

  17. Valk, S. L. et al. Personality and local brain structure: their shared genetic basis and reproducibility. NeuroImage 220, 117067 (2020).

    Article  PubMed  Google Scholar 

  18. Pape, K., Tamouza, R., Leboyer, M. & Zipp, F. Immunoneuropsychiatry—novel perspectives on brain disorders. Nat. Rev. Neurol. 15, 317–328 (2019).

    Article  PubMed  Google Scholar 

  19. Hussain, G. et al. Lipids as biomarkers of brain disorders. Crit. Rev. Food Sci. Nutr. 60, 351–374 (2020).

    Article  PubMed  Google Scholar 

  20. Zhang, S., Lachance, B. B., Mattson, M. P. & Jia, X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog. Neurobiol. 204, 102089 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luchetti, M., Barkley, J. M., Stephan, Y., Terracciano, A. & Sutin, A. R. Five-factor model personality traits and inflammatory markers: new data and a meta-analysis. Psychoneuroendocrinology 50, 181–193 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Terracciano, A., Stephan, Y., Luchetti, M., Albanese, E. & Sutin, A. R. Personality traits and risk of cognitive impairment and dementia. J. Psychiatr. Res. 89, 22–27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duberstein, P. R. et al. Personality and risk for Alzheimer’s disease in adults 72 years of age and older: a 6-year follow-up. Psychol. Aging 26, 351–362 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Terracciano, A. et al. Neuroticism and risk of Parkinson’s disease: a meta-analysis. Mov. Disord. 36, 1863–1870 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bower, J. H. et al. Anxious personality predicts an increased risk of Parkinson’s disease. Mov. Disord. 25, 2105–2113 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ishihara-Paul, L. et al. Prospective association between emotional health and clinical evidence of Parkinson’s disease. Eur. J. Neurol. 15, 1148–1154 (2008).

    Article  PubMed  Google Scholar 

  33. Jokela, M., Pulkki-Råback, L., Elovainio, M. & Kivimäki, M. Personality traits as risk factors for stroke and coronary heart disease mortality: pooled analysis of three cohort studies. J. Behav. Med. 37, 881–889 (2014).

    Article  PubMed  Google Scholar 

  34. Koorevaar, A. M. et al. Big Five personality and depression diagnosis, severity and age of onset in older adults. J. Affect. Disord. 151, 178–185 (2013).

    Article  PubMed  Google Scholar 

  35. Xia, J. et al. The relationship between neuroticism, major depressive disorder and comorbid disorders in Chinese women. J. Affect. Disord. 135, 100–105 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Simonsen, E. & Newton-Howes, G. Personality pathology and schizophrenia. Schizophr. Bull. 44, 1180–1184 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gale, C. R. et al. Pleiotropy between neuroticism and physical and mental health: findings from 108 038 men and women in UK Biobank. Transl. Psychiatry 6, e791 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, F. et al. Causal influences of neuroticism on mental health and cardiovascular disease. Hum. Genet. 140, 1267–1281 (2021).

    Article  PubMed  Google Scholar 

  39. Terracciano, A. et al. Reply to: “Is conscientiousness related to the risk of Parkinson’s disease?”. Mov. Disord. 36, 2216 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chida, Y. & Steptoe, A. Positive psychological well-being and mortality: a quantitative review of prospective observational studies. Psychosom. Med. 70, 741–756 (2008).

    Article  PubMed  Google Scholar 

  41. Boehm, J. K. & Kubzansky, L. D. The heart’s content: the association between positive psychological well-being and cardiovascular health. Psychol. Bull. 138, 655–691 (2012).

    Article  PubMed  Google Scholar 

  42. Wickett, R., Muhlert, N. & Niven, K. The influence of personality on interpersonal emotion regulation in the context of psychosocial stress. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph20043073 (2023).

  43. Bogg, T. & Roberts, B. W. Conscientiousness and health-related behaviors: a meta-analysis of the leading behavioral contributors to mortality. Psychol. Bull. 130, 887–919 (2004).

    Article  PubMed  Google Scholar 

  44. Klein, D. N., Kotov, R. & Bufferd, S. J. Personality and depression: explanatory models and review of the evidence. Annu. Rev. Clin. Psychol. 7, 269–295 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bjørnebekk, A. et al. Neuronal correlates of the five factor model (FFM) of human personality: multimodal imaging in a large healthy sample. NeuroImage 65, 194–208 (2013).

    Article  PubMed  Google Scholar 

  46. Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 20, 1669–1679 (2017).

    Article  PubMed  Google Scholar 

  47. Szeszko, P. R. et al. Frontotemporal thalamic connectivity in schizophrenia and schizotypal personality disorder. Psychiatry Res. Neuroimaging 322, 111463 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20, 1434–1447 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Catani, M., Dell’acqua, F. & Thiebaut de Schotten, M. A revised limbic system model for memory, emotion and behaviour. Neurosci. Biobehav. Rev. 37, 1724–1737 (2013).

    Article  PubMed  Google Scholar 

  50. Zarkali, A. et al. Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology 94, e1525–e1538 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. White, T. et al. Spatial characteristics of white matter abnormalities in schizophrenia. Schizophr. Bull. 39, 1077–1086 (2013).

    Article  PubMed  Google Scholar 

  52. Wardlaw, J. M., Smith, C. & Dichgans, M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 12, 483–497 (2013).

    Article  PubMed  Google Scholar 

  53. Yao, J. et al. The negative affectivity dimension of Type D personality associated with increased risk for acute ischemic stroke and white matter hyperintensity. J. Psychosom. Res. 160, 110973 (2022).

    Article  PubMed  Google Scholar 

  54. Rost, N. S. et al. White matter hyperintensity burden and susceptibility to cerebral ischemia. Stroke 41, 2807–2811 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eisenberger, N. I., Inagaki, T. K., Mashal, N. M. & Irwin, M. R. Inflammation and social experience: an inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain. Behav. Immun. 24, 558–563 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zahodne, L. B., Kraal, A. Z., Zaheed, A., Farris, P. & Sol, K. Longitudinal effects of race, ethnicity, and psychosocial disadvantage on systemic inflammation. SSM Popul. Health 7, 100391 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kiecolt-Glaser, J. K., Derry, H. M. & Fagundes, C. P. Inflammation: depression fans the flames and feasts on the heat. Am. J. Psychiatry 172, 1075–1091 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Irwin, M. R. & Vitiello, M. V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 18, 296–306 (2019).

    Article  PubMed  Google Scholar 

  59. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Glass, C. K. & Olefsky, J. M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635–645 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Camont, L., Chapman, M. J. & Kontush, A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med. 17, 594–603 (2011).

    Article  PubMed  Google Scholar 

  62. Kroencke, L., Harari, G. M., Katana, M. & Gosling, S. D. Personality trait predictors and mental well-being correlates of exercise frequency across the academic semester. Soc. Sci. Med. 236, 112400 (2019).

    Article  PubMed  Google Scholar 

  63. Scheffer, D. D. L. & Latini, A. Exercise-induced immune system response: anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165823 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  PubMed  Google Scholar 

  65. Sonar, S. A. & Lal, G. Blood–brain barrier and its function during inflammation and autoimmunity. J. Leukoc. Biol. 103, 839–853 (2018).

    Article  PubMed  Google Scholar 

  66. Huang, X., Hussain, B. & Chang, J. Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms. CNS Neurosci. Ther. 27, 36–47 (2021).

    Article  PubMed  Google Scholar 

  67. Felger, J. C. Imaging the role of inflammation in mood and anxiety-related disorders. Curr. Neuropharmacol. 16, 533–558 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dahlen, A. D., Miguet, M., Schioth, H. B. & Rukh, G. The influence of personality on the risk of myocardial infarction in UK Biobank cohort. Sci. Rep. 12, 6706 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ruijter, M. J. T., Dahlen, A. D., Rukh, G. & Schioth, H. B. Association of diligence and sociability with stroke: a UK Biobank study on personality proxies. Front. Biosci. 27, 231 (2022).

    Article  Google Scholar 

  70. Fry, A., Littlejohns, T., Sudlow, C., Doherty, N. & Allen, N. OP41 The representativeness of the UK Biobank cohort on a range of sociodemographic, physical, lifestyle and health-related characteristics. J. Epidemiol. Community Health 70, A26–A26 (2016).

    Article  Google Scholar 

  71. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Markon, K. E., Krueger, R. F. & Watson, D. Delineating the structure of normal and abnormal personality: an integrative hierarchical approach. J. Pers. Soc. Psychol. 88, 139–157 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Samuel, D. B. & Widiger, T. A. A meta-analytic review of the relationships between the five-factor model and DSM-IV-TR personality disorders: a facet level analysis. Clin. Psychol. Rev. 28, 1326–1342 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Forgy, E. W. Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biometrics 21, 768–769 (1965).

    Google Scholar 

  75. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. 28, 100–108 (1979).

    Article  Google Scholar 

  76. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Brain imaging documentation. UK Biobank https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf.

  78. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  79. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article  PubMed  Google Scholar 

  80. Griffanti, L. et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. NeuroImage 141, 191–205 (2016).

    Article  PubMed  Google Scholar 

  81. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, https://doi.org/10.1186/s13742-015-0047-8 (2015).

  83. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Choi, S. W. & O’Reilly, P. F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience https://doi.org/10.1093/gigascience/giz082 (2019).

  87. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 1985–1998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hu, L. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Modeling 6, 1–55 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the STI2030-Major Projects (2022ZD0211600), National Natural Science Foundation of China (82071201, 82071997), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), Research Start-up Fund of Huashan Hospital (2022QD002), Excellence 2025 Talent Cultivation Program at Fudan University (3030277001), Shanghai Talent Development Funding for The Project (2019074), Shanghai Rising-Star Program (21QA1408700), 111 Project (B18015), ZHANGJIANG LAB, Tianqiao and Chrissy Chen Institute, the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, and Shanghai Center for Brain Science and Brain-Inspired Technology, Fudan University. We want to thank all the participants and researchers from the cohorts, including UKB, FinnGen, IPDGC, MEGASTROKE, PGC and CLOZUK.

Author information

Authors and Affiliations

Authors

Contributions

All authors had full access to the data in the study and accepted responsibility to submit them for publication. J.-T.Y. designed the study. Y.-R.Z. and Y.-T.D. conducted the primary analyses and drafted the manuscript. Y.-Z.L., R.-Q.Z., Y.-J.G., B.-S.W., W.Z. and K.K. contributed to imaging, SEM and genetic data analyses. J.-T.Y., W.C., J.-F.F., B.J.S., J.S. and A.D.S. critically revised the manuscript, and all authors approved the final version.

Corresponding authors

Correspondence to Wei Cheng or Jin-Tai Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks M. Hughes, A. Ibanez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YR., Deng, YT., Li, YZ. et al. Personality traits and brain health: a large prospective cohort study. Nat. Mental Health 1, 722–735 (2023). https://doi.org/10.1038/s44220-023-00119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00119-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing