Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Growing placebo response in TMS treatment for depression: a meta-analysis of 27-year randomized sham-controlled trials

Abstract

This meta-analysis investigated placebo responses in repetitive transcranial magnetic stimulation treatment for depression, an area with limited systematic analysis. The initial literature search yielded 2,783 relevant records from the past 27 years, leading to the analysis of 52 randomized controlled trials encompassing 54 placebo arms with 2,122 sham participants. Placebo responses were large (d = 1.016) and increasing yearly (Z = 2.18, P = 0.029), irrespective of sham methods, assessment scales or age. Nevertheless, the trial location, number of sites, sample size, sponsor, sex ratio, study quality and medication status had an influence on the active or sham effect and consequently the outcome. Notably, the placebo and active effects increased in parallel (rs = 0.738, P < 0.001), resulting in a time-independent trial outcome. These findings reveal significant placebo responses from 1996 to 2022 but with minimal impact on the trial outcomes, as placebo and active effects demonstrated parallel growth. These results could inform the design of further clinical trials, especially for repetitive transcranial magnetic stimulation in the treatment of depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Forest plot showing the placebo response in control groups of TMS studies.
Fig. 3: Regression of effect size (d) and selected variables.

Similar content being viewed by others

Data availability

The meta-analysis is registered on the INPLASY database (INPLASY2022120103) and details can be found at https://inplasy.com/inplasy-2022-12-0103/. All data related to this study are available on the Open Science Framework (OSF) data repository89 at https://osf.io/gczab/?view_only=62c182373b6a49bb89c7fb31c4dfee28.

Code availability

The code used in the current study is publicly available at the OSF repository89 (https://osf.io/gczab/?view_only=62c182373b6a49bb89c7fb31c4dfee28).

References

  1. Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol. Psychiatry 90, 689–700 (2021).

    Article  PubMed  Google Scholar 

  2. Malhi, G. S. & Mann, J. J. Depression. Lancet 392, 2299–2312 (2018).

    Article  PubMed  Google Scholar 

  3. Lefaucheur, J. P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206 (2014).

    Article  PubMed  Google Scholar 

  4. Mikellides, G., Michael, P. & Tantele, M. Repetitive transcranial magnetic stimulation: an innovative medical therapy. Psychiatriki 32, 67–74 (2021).

    PubMed  Google Scholar 

  5. Nguyen, K.-H. & Gordon, L. G. Cost-effectiveness of repetitive transcranial magnetic stimulation versus antidepressant therapy for treatment-resistant depression. Value Health 18, 597–604 (2015).

    Article  PubMed  Google Scholar 

  6. Fitzgibbon, K. P. et al. Cost-utility analysis of electroconvulsive therapy and repetitive transcranial magnetic stimulation for treatment-resistant depression in Ontario. Can. J. Psychiatry 65, 164–173 (2020).

    PubMed  Google Scholar 

  7. Rossi, S. et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines. Clin. Neurophysiol. 132, 269–306 (2021).

    Article  PubMed  Google Scholar 

  8. Carroll, K. M. in International Encyclopedia of the Social & Behavioral Sciences (eds Smelser, N. J. & Baltes, P. B.) 2043–2048 (Elsevier, 2001).

  9. Hafliðadóttir, S. H. et al. Placebo response and effect in randomized clinical trials: meta-research with focus on contextual effects. Trials 22, 493 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moerman, D. E. Cultural variations in the placebo effect: ulcers, anxiety, and blood pressure. Med. Anthropol. Q. 14, 51–72 (2000).

    Article  PubMed  Google Scholar 

  11. Kaptchuk, T. J. & Miller, F. G. Placebo effects in medicine. N. Engl. J. Med. 373, 8–9 (2015).

    Article  PubMed  Google Scholar 

  12. Walsh, B. T., Seidman, S. N., Sysko, R. & Gould, M. Placebo response in studies of major depression: variable, substantial, and growing. JAMA 287, 1840–1847 (2002).

    Article  PubMed  Google Scholar 

  13. Khan, A., Fahl Mar, K., Faucett, J., Khan Schilling, S. & Brown, W. A. Has the rising placebo response impacted antidepressant clinical trial outcome? Data from the US Food and Drug Administration 1987–2013. World Psychiatry 16, 181–192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Granato, A. et al. Dramatic placebo effect of high frequency repetitive TMS in treatment of chronic migraine and medication overuse headache. J. Clin. Neurosci. 60, 96–100 (2019).

    Article  PubMed  Google Scholar 

  15. Zebenholzer, K., Thamer, M. & Wober, C. Quality of life, depression, and anxiety 6 months after inpatient withdrawal in patients with medication overuse headache: an observational study. Clin. J. Pain 28, 284–290 (2012).

    Article  PubMed  Google Scholar 

  16. Benedetti, F., Carlino, E. & Pollo, A. How placebos change the patient’s brain. Neuropsychopharmacology 36, 339–354 (2011).

    Article  PubMed  Google Scholar 

  17. Bartlett, J., Upshaw, W. N. & Obregon, D. Interactions of the placebo effect and transcranial magnetic stimulation. Prim. Care Companion CNS Disord. https://doi.org/10.4088/PCC.20lr02874 (2021).

  18. Burke, M. J. et al. Placebo effects and neuromodulation for depression: a meta-analysis and evaluation of shared mechanisms. Mol. Psychiatry 27, 1658–1666 (2022).

    Article  PubMed  Google Scholar 

  19. Schweinhardt, P., Seminowicz, D. A., Jaeger, E., Duncan, G. H. & Bushnell, M. C. The anatomy of the mesolimbic reward system: a link between personality and the placebo analgesic response. J. Neurosci. 29, 4882–4887 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Benedetti, F. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brunoni, A. R., Lopes, M., Kaptchuk, T. J. & Fregni, F. Placebo response of non-pharmacological and pharmacological trials in major depression: a systematic review and meta-analysis. PLoS ONE 4, e4824 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Razza, L. B. et al. A systematic review and meta-analysis on placebo response to repetitive transcranial magnetic stimulation for depression trials. Prog. Neuropsychopharmacol. Biol. Psychiatry 81, 105–113 (2018).

    Article  PubMed  Google Scholar 

  23. Theleritis, C. et al. Two versus one high-frequency repetitive transcranial magnetic stimulation session per day for treatment-resistant depression. J. ECT 33, 190–197 (2017).

    Article  PubMed  Google Scholar 

  24. Armas-Castañeda, G. et al. Two rTMS sessions per week: a practical approach for treating major depressive disorder. Neuroreport 32, 1364–1369 (2021).

    Article  PubMed  Google Scholar 

  25. Tong, J. et al. Impact of repetitive transcranial magnetic stimulation (rTMS) on theory of mind and executive function in major depressive disorder and its correlation with brain-derived neurotrophic factor (BDNF): a randomized, double-blind, sham-controlled trial. Brain Sci. https://doi.org/10.3390/brainsci11060765 (2021).

  26. Wang, Y.-M. et al. Randomized controlled trial of repetitive transcranial magnetic stimulation combined with paroxetine for the treatment of patients with first-episode major depressive disorder. Psychiatry Res. 254, 18–23 (2017).

    Article  PubMed  Google Scholar 

  27. Matsuda, Y., Kito, S., Igarashi, Y. & Shigeta, M. Efficacy and safety of deep transcranial magnetic stimulation in office workers with treatment-resistant depression: a randomized, double-blind, sham-controlled trial. Neuropsychobiology 79, 208–213 (2020).

    Article  PubMed  Google Scholar 

  28. Ray, S. et al. Efficacy of adjunctive high frequency repetitive transcranial magnetic stimulation of left prefrontal cortex in depression: a randomized sham controlled study. J. Affect. Disord. 128, 153–159 (2011).

    Article  PubMed  Google Scholar 

  29. Yesavage, J. A. et al. Effect of repetitive transcranial magnetic stimulation on treatment-resistant major depression in US veterans: a randomized clinical trial. JAMA Psychiatry 75, 884–893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carvalho, A. F. et al. Bias in peripheral depression biomarkers. Psychother. Psychosom. 85, 81–90 (2016).

    Article  PubMed  Google Scholar 

  31. Colloca, L. & Barsky, A. J. Placebo and nocebo effects. N. Engl. J. Med. 382, 554–561 (2020).

    Article  PubMed  Google Scholar 

  32. Kienle, G. S. & Kiene, H. The powerful placebo effect: fact or fiction? J. Clin. Epidemiol. 50, 1311–1318 (1997).

    Article  PubMed  Google Scholar 

  33. Kaptchuk, T. J. The placebo effect in alternative medicine: can the performance of a healing ritual have clinical significance? Ann. Intern. Med. 136, 817–825 (2002).

    Article  PubMed  Google Scholar 

  34. Evers, A. W. M. et al. Implications of placebo and nocebo effects for clinical practice: expert consensus. Psychother. Psychosom. 87, 204–210 (2018).

    Article  PubMed  Google Scholar 

  35. Liu, A. et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 9, 5092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rief, W. et al. Meta-analysis of the placebo response in antidepressant trials. J. Affect. Disord. 118, 1–8 (2009).

    Article  PubMed  Google Scholar 

  37. Burke, M. J., Kaptchuk, T. J. & Pascual-Leone, A. Challenges of differential placebo effects in contemporary medicine: the example of brain stimulation. Ann. Neurol. 85, 12–20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kaptchuk, T. J., Goldman, P., Stone, D. A. & Stason, W. B. Do medical devices have enhanced placebo effects? J. Clin. Epidemiol. 53, 786–792 (2000).

    Article  PubMed  Google Scholar 

  39. Jones, B. D. M. et al. Magnitude of the placebo response across treatment modalities used for treatment-resistant depression in adults: a systematic review and meta-analysis. JAMA Netw. Open 4, e2125531 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rodrigues, F. B. & Ferreira, J. J. in International Review of Neurobiology Vol. 153 (eds Witek, N. P. et al.) 49–70 (Academic, 2020).

  41. Davis, N. J., Gold, E., Pascual-Leone, A. & Bracewell, R. M. Challenges of proper placebo control for non-invasive brain stimulation in clinical and experimental applications. Eur. J. Neurosci. 38, 2973–2977 (2013).

    Article  PubMed  Google Scholar 

  42. Girach, A., Aamir, A. & Zis, P. The neurobiology under the placebo effect. Drugs Today 55, 469–476 (2019).

    Article  Google Scholar 

  43. Finniss, D. G., Kaptchuk, T. J., Miller, F. & Benedetti, F. Biological, clinical, and ethical advances of placebo effects. Lancet 375, 686–695 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rutherford, B. R. & Roose, S. P. A model of placebo response in antidepressant clinical trials. Am. J. Psychiatry 170, 723–733 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coleshill, M. J., Sharpe, L., Colloca, L., Zachariae, R. & Colagiuri, B. Placebo and active treatment additivity in placebo analgesia: research to date and future directions. Int. Rev. Neurobiol. 139, 407–441 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Agid, O. et al. Meta-regression analysis of placebo response in antipsychotic trials, 1970–2010. Am. J. Psychiatry 170, 1335–1344 (2013).

    Article  PubMed  Google Scholar 

  47. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. & The Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 (2009).

  48. Cosmo, C., Zandvakili, A., Petrosino, N. J., Berlow, Y. A. & Philip, N. S. Repetitive transcranial magnetic stimulation for treatment-resistant depression: recent critical advances in patient care. Curr. Treat. Options Psychiatry 8, 47–63 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Givens, G. H., Smith, D. D. & Tweedie, R. L. Publication bias in meta-analysis: a Bayesian data-augmentation approach to account for issues exemplified in the passive smoking debate. Stat. Sci. https://doi.org/10.1214/ss/1030037958 (1997).

  50. Slavin, R. & Smith, D. The relationship between sample sizes and effect sizes in systematic reviews in education. Educ. Eval. Policy Anal. 31, 500–506 (2009).

    Article  Google Scholar 

  51. Egger, M., Smith, G. D., Schneider, M., & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sterne, J. A. C., Gavaghan, D. & Egger, M. Publication and related bias in meta-analysis. J. Clin. Epidemiol. 53, 1119–1129 (2000).

    Article  PubMed  Google Scholar 

  53. Rhodes, S. Publication bias in meta-analysis by H. R. Rothstein, A. J. Sutton and M. Borenstein (eds). J. R. Stat. Soc. Ser. A Stat. Soc. 169, 1012–1012 (2006).

    Article  Google Scholar 

  54. Kjaergard, L. L., Villumsen, J. & Gluud, C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann. Intern. Med. 135, 982–989 (2001).

    Article  PubMed  Google Scholar 

  55. Krzywinski, M. & Altman, N. Power and sample size. Nat. Methods 10, 1139–1140 (2013).

    Article  Google Scholar 

  56. Arias-de la Torre, J. et al. Prevalence and variability of current depressive disorder in 27 European countries: a population-based study. Lancet Public Health 6, e729–e738 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Koyanagi, A., Oh, H., Stubbs, B., Haro, J. M. & DeVylder, J. E. Epidemiology of depression with psychotic experiences and its association with chronic physical conditions in 47 low- and middle-income countries. Psychol. Med. 47, 531–542 (2017).

    Article  PubMed  Google Scholar 

  58. Giannakopoulou, O. et al. The genetic architecture of depression in individuals of East Asian ancestry: a genome-wide association study. JAMA Psychiatry 78, 1258–1269 (2021).

    Article  PubMed  Google Scholar 

  59. Weimer, K., Colloca, L. & Enck, P. Age and sex as moderators of the placebo response – an evaluation of systematic reviews and meta-analyses across medicine. Gerontology 61, 97–108 (2015).

    Article  PubMed  Google Scholar 

  60. Enck, P. & Klosterhalfen, S. Does sex/gender play a role in placebo and nocebo effects? Conflicting evidence from clinical trials and experimental studies. Front. Neurosci. 13, 160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Enck, P., Benedetti, F. & Schedlowski, M. New insights into the placebo and nocebo responses. Neuron 59, 195–206 (2008).

    Article  PubMed  Google Scholar 

  62. Rubinow, D. R. Sex, drugs, and the neurobiology of the placebo effect. Biol. Psychiatry 79, 788–789 (2016).

    Article  PubMed  Google Scholar 

  63. Ashar, Y. K., Chang, L. J. & Wager, T. D. Brain mechanisms of the placebo effect: an affective appraisal account. Annu. Rev. Clin. Psychol. 13, 73–98 (2017).

    Article  PubMed  Google Scholar 

  64. Wang, R. S. et al. Network analysis of the genomic basis of the placebo effect. JCI Insight https://doi.org/10.1172/jci.insight.93911 (2017).

  65. Franconi, F., Campesi, I., Colombo, D. & Antonini, P. Sex–gender variable: methodological recommendations for increasing scientific value of clinical studies. Cells https://doi.org/10.3390/cells8050476 (2019).

  66. Shansky, R. M. & Murphy, A. Z. Considering sex as a biological variable will require a global shift in science culture. Nat. Neurosci. 24, 457–464 (2021).

    Article  PubMed  Google Scholar 

  67. Shafir, R., Olson, E. & Colloca, L. The neglect of sex: a call to action for including sex as a biological variable in placebo and nocebo research. Contemp. Clin. Trials 116, 106734 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Merenstein, J. L. & Bennett, I. J. Bridging patterns of neurocognitive aging across the older adult lifespan. Neurosci. Biobehav. Rev. 135, 104594 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Giedd, J. N. et al. Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology 40, 43–49 (2015).

    Article  PubMed  Google Scholar 

  70. Shields, J., Mock, J., Devier, D. & Foundas, A. Unilateral repetitive transcranial magnetic stimulation differentially affects younger and older adults completing a verbal working memory task. J. Neurol. Sci. 384, 15–20 (2018).

    Article  PubMed  Google Scholar 

  71. Alawi, M., Lee, P. F., Deng, Z.-D., Goh, Y. K. & Croarkin, P. E. Modelling the differential effects of age on transcranial magnetic stimulation induced electric fields. J. Neural Eng. https://doi.org/10.1088/1741-2552/ac9a76 (2023).

  72. Hsu, C.-W., Wang, L.-J. & Lin, P.-Y. Efficacy of repetitive transcranial magnetic stimulation for Tourette syndrome: a systematic review and meta-analysis. Brain Stimul. 11, 1110–1118 (2018).

    Article  PubMed  Google Scholar 

  73. Goldman, P., Pedersen, E., Bailey, M., Hasse, M. & Koo, M. Age as a determinant of transcranial magnetic stimulation efficacy for major depressive disorder in a naturalistic clinic setting. Brain Stimul. 15, 695–696 (2022).

    Article  PubMed  Google Scholar 

  74. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 5th edn (American Psychiatric Association Publishing, 2013).

  76. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines (World Health Organization, 1992).

  77. Hackshaw, A. Small studies: strengths and limitations. Eur. Respir. J. 32, 1141–1143 (2008).

    Article  PubMed  Google Scholar 

  78. Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn (Routledge, 1988); https://doi.org/10.4324/9780203771587.

  79. Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62 (1960).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Montgomery, S. A. & Åsberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389 (1979).

    Article  PubMed  Google Scholar 

  81. Higgins, J. P. T. & Green, S. (eds) Cochrane Handbook for Systematic Reviews of Interventions 1st edn (Wiley, 2008).

  82. Jadad, A. R. et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control. Clin. Trials 17, 1–12 (1996).

    Article  PubMed  Google Scholar 

  83. DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188 (1986).

    Article  PubMed  Google Scholar 

  84. Hartmann, A., Herzog, T. & Drinkmann, A. Psychotherapy of bulimia nervosa: what is effective? A meta-analysis. J. Psychosom. Res. 36, 159–167 (1992).

    Article  PubMed  Google Scholar 

  85. Becker, B. J. Synthesizing standardized mean-change measures. Br. J. Math. Stat. Psychol. 41, 257–278 (1988).

    Article  Google Scholar 

  86. Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ 327, 557–560 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Edinger, J. D. & Sampson, W. S. A primary care ‘friendly’ cognitive behavioral insomnia therapy. Sleep 26, 177–182 (2003).

    Article  PubMed  Google Scholar 

  88. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 57, 289–300 (1995).

    Google Scholar 

  89. Xu, Y.-t. Placebo Response in Transcranial Magnetic Stimulation Treatment for Depression (OSF, accessed 29 July 2023); https://doi.org/10.17605/OSF.IO/GCZAB

  90. Blumberger, D. M. et al. A randomized double-blind sham-controlled comparison of unilateral and bilateral repetitive transcranial magnetic stimulation for treatment-resistant major depression. World J. Biol. Psychiatry 13, 423–435 (2012).

    Article  PubMed  Google Scholar 

  91. Bretlau, L. G. et al. Repetitive transcranial magnetic stimulation (rTMS) in combination with escitalopram in patients with treatment-resistant major depression: a double-blind, randomised, sham-controlled trial. Pharmacopsychiatry 41, 41–47 (2008).

    Article  PubMed  Google Scholar 

  92. Croarkin, P. E. et al. Left prefrontal transcranial magnetic stimulation for treatment-resistant depression in adolescents: a double-blind, randomized, sham-controlled trial. Neuropsychopharmacology 46, 462–469 (2021).

    Article  PubMed  Google Scholar 

  93. Duprat, R. et al. Accelerated intermittent theta burst stimulation treatment in medication-resistant major depression: a fast road to remission? J. Affect. Disord. 200, 6–14 (2016).

    Article  PubMed  Google Scholar 

  94. Fitzgerald, P. B. et al. Transcranial magnetic stimulation in the treatment of depression: a double-blind, placebo-controlled trial. Arch. Gen. Psychiatry 60, 1002–1008 (2003).

    Article  PubMed  Google Scholar 

  95. Fitzgerald, P. B. et al. A randomized, controlled trial of sequential bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression. Am. J. Psychiatry 163, 88–94 (2006).

    Article  PubMed  Google Scholar 

  96. Fitzgerald, P. B. et al. A double blind randomized trial of unilateral left and bilateral prefrontal cortex transcranial magnetic stimulation in treatment resistant major depression. J. Affect. Disord. 139, 193–198 (2012).

    Article  PubMed  Google Scholar 

  97. George, M. S. et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch. Gen. Psychiatry 67, 507–516 (2010).

    Article  PubMed  Google Scholar 

  98. Huang, M. L. et al. Repetitive transcranial magnetic stimulation in combination with citalopram in young patients with first-episode major depressive disorder: a double-blind, randomized, sham-controlled trial. Aust. N. Z. J. Psychiatry 46, 257–264 (2012).

    Article  PubMed  Google Scholar 

  99. Kaster, T. S. et al. Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: a prospective randomized controlled trial. Neuropsychopharmacology 43, 2231–2238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Klein, E. et al. Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study. Arch. Gen. Psychiatry 56, 315–320 (1999).

    Article  PubMed  Google Scholar 

  101. Leuchter, A. F. et al. Efficacy and safety of low-field synchronized transcranial magnetic stimulation (sTMS) for treatment of major depression. Brain Stimul. 8, 787–794 (2015).

    Article  PubMed  Google Scholar 

  102. Li, C.-T. et al. Task-modulated brain activity predicts antidepressant responses of prefrontal repetitive transcranial magnetic stimulation: a randomized sham-control study. Chronic Stress https://doi.org/10.1177/24705470211006855 (2021).

  103. Dai, L. et al. The therapeutic effect of repetitive transcranial magnetic stimulation in elderly depression patients. Medicine 99, e21493 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Martiny, K., Lunde, M. & Bech, P. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression. Biol. Psychiatry 68, 163–169 (2010).

    Article  PubMed  Google Scholar 

  105. He, M., Gu, Z., Wang, X. & Tian, X. Effects of repetitive transcranial magnetic stimulation on hypothalamic–pituitary–adrenal axis of patients with depression. J. Med. Coll. PLA 24, 337–345 (2009).

    Article  Google Scholar 

  106. O’Reardon, J. P. et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol. Psychiatry 62, 1208–1216 (2007).

    Article  PubMed  Google Scholar 

  107. Rothärmel, M. et al. The priming effect of repetitive transcranial magnetic stimulation on clinical response to electroconvulsive therapy in treatment-resistant depression: a randomized, double-blind, sham-controlled study. Psychol. Med. https://doi.org/10.1017/S0033291721003810 (2021).

  108. Tavares, D. F. et al. Treatment of mixed depression with theta-burst stimulation (TBS): results from a double-blind, randomized, sham-controlled clinical trial. Neuropsychopharmacology 46, 2257–2265 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ullrich, H., Kranaster, L., Sigges, E., Andrich, J. & Sartorius, A. Ultra-high-frequency left prefrontal transcranial magnetic stimulation as augmentation in severely ill patients with depression: a naturalistic sham-controlled, double-blind, randomized trial. Neuropsychobiology 66, 141–148 (2012).

    Article  PubMed  Google Scholar 

  110. van Belkum, S. M. et al. No antidepressant effects of low intensity transcranial pulsed electromagnetic fields for treatment resistant depression. J. Affect. Disord. 294, 679–685 (2021).

    Article  PubMed  Google Scholar 

  111. Xie, M., Jiang, W. & Yang, H. Efficacy and safety of the Chinese herbal medicine shuganjieyu with and without adjunctive repetitive transcranial magnetic stimulation (rTMS) for geriatric depression: a randomized controlled trial. Shanghai Arch. Psychiatry 27, 103–110 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. Zavorotnyy, M. et al. Intermittent theta-burst stimulation moderates interaction between increment of N-acetyl-aspartate in anterior cingulate and improvement of unipolar depression. Brain Stimul. 13, 943–952 (2020).

    Article  PubMed  Google Scholar 

  113. Leuchter, A. et al. Adaptive Design Study of NEST sTMS in Subjects With Major Depressive Disorder https://clinicaltrials.gov/study/NCT03288714 (2021).

  114. Avery, D. H. et al. A controlled study of repetitive transcranial magnetic stimulation in medication-resistant major depression. Biol. Psychiatry 59, 187–194 (2006).

    Article  PubMed  Google Scholar 

  115. Blumberger, D. M. et al. Unilateral and bilateral MRI-targeted repetitive transcranial magnetic stimulation for treatment-resistant depression: a randomized controlled study. J. Psychiatry Neurosci. 41, E58–E66 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Carpenter, L. L. et al. rTMS with a two-coil array: safety and efficacy for treatment resistant major depressive disorder. Brain Stimul. 10, 926–933 (2017).

    Article  PubMed  Google Scholar 

  117. Frick, A., Persson, J. & Bodén, R. Habitual caffeine consumption moderates the antidepressant effect of dorsomedial intermittent theta-burst transcranial magnetic stimulation. J. Psychopharmacol. 35, 1536–1541 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Herwig, U. et al. Antidepressant effects of augmentative transcranial magnetic stimulation: randomised multicentre trial. Br. J. Psychiatry 191, 441–448 (2007).

    Article  PubMed  Google Scholar 

  119. Levkovitz, Y. et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial. World Psychiatry 14, 64–73 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pan, F. et al. Neuronavigation-guided rTMS for the treatment of depressive patients with suicidal ideation: a double-blind, randomized, sham-controlled trial. Clin. Pharmacol. Ther. 108, 826–832 (2020).

    Article  PubMed  Google Scholar 

  121. Brunelin, J. et al. The efficacy and safety of low frequency repetitive transcranial magnetic stimulation for treatment-resistant depression: the results from a large multicenter French RCT. Brain Stimul. 7, 855–863 (2014).

    Article  PubMed  Google Scholar 

  122. Chou, P. H. et al. Antidepressant efficacy and immune effects of bilateral theta burst stimulation monotherapy in major depression: a randomized, double-blind, sham-controlled study. Brain Behav. Immun. 88, 144–150 (2020).

    Article  PubMed  Google Scholar 

  123. Dunlop, K. et al. Dorsomedial prefrontal cortex repetitive transcranial magnetic stimulation for treatment-refractory major depressive disorder: a three-arm, blinded, randomized controlled trial. Brain Stimul. 13, 337–340 (2020).

    Article  PubMed  Google Scholar 

  124. Pallanti, S., Bernardi, S., Di Rollo, A., Antonini, S. & Quercioli, L. Unilateral low frequency versus sequential bilateral repetitive transcranial magnetic stimulation: is simpler better for treatment of resistant depression? Neuroscience 167, 323–328 (2010).

    Article  PubMed  Google Scholar 

  125. Rumi, D. O. et al. Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: a double-blind placebo-controlled study. Biol. Psychiatry 57, 162–166 (2005).

    Article  PubMed  Google Scholar 

  126. Zhang, Z. et al. Task-related functional magnetic resonance imaging-based neuronavigation for the treatment of depression by individualized repetitive transcranial magnetic stimulation of the visual cortex. Sci. China Life Sci. 64, 96–106 (2021).

    Article  PubMed  Google Scholar 

  127. Wang, X. et al. Therapeutic efficacy of connectivity-directed transcranial magnetic stimulation on anticipatory anhedonia. Depress. Anxiety 38, 972–984 (2021).

    Article  PubMed  Google Scholar 

  128. Struckmann, W., Persson, J., Weigl, W., Gingnell, M. & Bodén, R. Modulation of the prefrontal blood oxygenation response to intermittent theta-burst stimulation in depression: a sham-controlled study with functional near-infrared spectroscopy. World J. Biol. Psychiatry https://doi.org/10.1080/15622975.2020.1785007 (2020).

  129. Koerselman, F., Laman, D. M., van Duijn, H., van Duijn, M. A. J. & Willems, M. A. M. A 3-month, follow-up, randomized, placebo-controlled study of repetitive transcranial magnetic stimulation in depression. J. Clin. Psychiatry 65, 1323–1328 (2004).

    Article  PubMed  Google Scholar 

  130. Rossini, D. et al. Does rTMS hasten the response to escitalopram, sertraline, or venlafaxine in patients with major depressive disorder? A double-blind, randomized, sham-controlled trial. J. Clin. Psychiatry 66, 1569–1575 (2005).

    Article  PubMed  Google Scholar 

  131. Yu, F. et al. Repetitive transcranial magnetic stimulation promotes response inhibition in patients with major depression during the stop-signal task. J. Psychiatr. Res. 151, 427–438 (2022).

    Article  PubMed  Google Scholar 

  132. Pan, F. et al. Effects of neuronavigation-guided rTMS on serum BDNF, TrkB and VGF levels in depressive patients with suicidal ideation. J. Affect. Disord. 323, 617–623 (2023).

    Article  PubMed  Google Scholar 

  133. Wilkening, J., Witteler, F. & Goya-Maldonado, R. Suicidality and relief of depressive symptoms with intermittent theta burst stimulation in a sham-controlled randomized clinical trial. Acta Psychiatr. Scand. 146, 540–556 (2022).

    Article  PubMed  Google Scholar 

  134. Dai, L. et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) accelerates onset time of beneficial treating effects and improves clinical symptoms of depression. CNS Neurol. Disord. Drug Targets 21, 500–510 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by STI2030-Major Projects (2021ZD0203900), Natural Science Foundation of China (NSFC) grant (32241015, T.-F.Y.; 32071054, Y.T.), the Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support (20181715, T.-F.Y.), the Science and Technology Commission of Shanghai Municipality (23XD1423000 and 23ZR1480800, T.-F.Y.) and the Shanghai Municipal Commission of Health (2022JC016, T.-F.Y.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.-F.Y. had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. T.-F.Y., Y.T. and Y.X. were responsible for the concept and design. All authors carried out the acquisition, analysis or interpretation of data. Y.X., Y.Z. and D.Z. drafted the paper. D.Z., T.-F.Y. and Y.T. were responsible for critical revision of the paper for important intellectual content. Y.X. and Y.Z. carried out the statistical analysis. T.-F.Y. obtained the funding and provided administrative, technical or material support. Supervision was by T.-F.Y. and Y.T.

Corresponding authors

Correspondence to Yanghua Tian or Ti-Fei Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Sujit K. Kar, Tyler Kaster and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

PubMed search strategy and Supplementary Tables 1–4 and Figs. 1–6.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Y., Zhao, D. et al. Growing placebo response in TMS treatment for depression: a meta-analysis of 27-year randomized sham-controlled trials. Nat. Mental Health 1, 792–809 (2023). https://doi.org/10.1038/s44220-023-00118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00118-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing