Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Aberrant brain activity in pedophilia links to receptor distribution, gene expression, and behavior

Abstract

Despite an estimated lifetime prevalence of 0.5–1.0% in men and high public concern, no effective treatment is known for pedophilic disorder. Here, we provide robust meta-analytic evidence that brain activity is not generally altered in pedophilia but deviates specifically in response to sexual stimuli. We show how this meta-analysis-derived functional brain alteration pattern in pedophiles maps onto underlying neurophysiology in terms of specific neurotransmitter systems and their corresponding gene expression as well as to behavioral aspects. We report robust and specific associations between functional brain alterations in pedophiles and the distribution of the serotonergic 5-HT1B receptor as derived from in vivo positron emission tomography data as well as gene expression analyses. At the functional level, the alterations related to cognitive processes including self-regulation and goal-directed behavior. These findings warrant further investigation into the molecular mechanisms underlying pedophilia and point toward the development of specific pharmacological interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain regions showing aberrant brain activity associated with pedophilia.
Fig. 2: Relationship of altered brain activity in pedophiles in response to sexual stimuli with neurotransmitter systems, gene expression, and behavior.

Similar content being viewed by others

Data availability

Coordinates used in the meta-analyses are available from the included studies that are referenced in the Supplementary Information. Transmitter and receptor atlases are shipped with the JuSpace Toolbox (https://github.com/juryxy/JuSpace/). Neurosynth data are available at https://neurosynth.org/. Allen Human Brain Atlas data are available from https://human.brain-map.org/.

Code availability

ALE software is available at https://www.brainmap.org/ale/, the JuBrain Anatomy Toolbox 3.0 at https://github.com/inm7/jubrain-anatomy-toolbox, the JuSpace Toolbox 1.4 at https://github.com/juryxy/JuSpace, Neurosynth 0.3.8 at https://github.com/neurosynth/neurosynth, neuromaps 0.0.3 at https://github.com/netneurolab/neuromaps, and the Talairach Client 2.4.3 at http://www.talairach.org/client.html.

References

  1. von Krafft-Ebing, R. Psychopathia sexualis: Mit Besonderer Berücksichtigung der conträren Sexualempfindung: Eine klinisch-forensische Studie (Verlag von F. Enke, 1898).

  2. Devereux, G. Why Oedipus killed Laius; a note on the complementary Oedipus complex in Greek drama. Int. J. Psychoanal. 34, 132–141 (1953).

    PubMed  Google Scholar 

  3. Ungaretti, J. R. Pederasty, heroism, and the family in classical Greece. J. Homosex. 3, 291–300 (1978).

    Article  PubMed  Google Scholar 

  4. Hughes, J. R. Review of medical reports on pedophilia. Clin. Pediatr. (Phila.) 46, 667–682 (2007).

    Article  PubMed  Google Scholar 

  5. Green, R. Is pedophilia a mental disorder? Arch. Sex. Behav. 31, 467–471 (2002).

    Article  PubMed  Google Scholar 

  6. de Waal, F. B. M. in Pedophilia (ed. Feierman, J. R.) 378–393 (Springer, 1990).

  7. Seto, M. C. Pedophilia. Annu. Rev. Clin. Psychol. 5, 391–407 (2009).

    Article  PubMed  Google Scholar 

  8. Mokros, A., Osterheider, M. & Nitschke, J. Pedophilia. Prevalence, etiology, and diagnostics. Nervenarzt 83, 355–358 (2012).

    Article  PubMed  Google Scholar 

  9. Mokros, A. & Habermeyer, E. Regression to the mean mimicking changes in sexual arousal to child stimuli in pedophiles. Arch. Sex. Behav. 45, 1863–1867 (2016).

    Article  PubMed  Google Scholar 

  10. Muller, K. et al. Changes in sexual arousal as measured by penile plethysmography in men with pedophilic sexual interest. J. Sex. Med. 11, 1221–1229 (2014).

    Article  PubMed  Google Scholar 

  11. Beier, K. M. et al. The German Dunkelfeld project: a pilot study to prevent child sexual abuse and the use of child abusive images. J. Sex. Med. 12, 529–542 (2015).

    Article  PubMed  Google Scholar 

  12. Landgren, V. et al. Effect of gonadotropin-releasing hormone antagonist on risk of committing child sexual abuse in men with pedophilic disorder: a randomized clinical trial. JAMA Psychiatry 77, 897–905 (2020).

    Article  PubMed  Google Scholar 

  13. Fazio, R. L. Toward a neurodevelopmental understanding of pedophilia. J. Sex. Med. 15, 1205–1207 (2018).

    Article  PubMed  Google Scholar 

  14. Tenbergen, G. et al. The neurobiology and psychology of pedophilia: recent advances and challenges. Front. Hum. Neurosci. 9, 344 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jordan, K. et al. Are there any biomarkers for pedophilia and sexual child abuse? A review. Front. Psychiatry 10, 940 (2019).

    Article  PubMed  Google Scholar 

  16. Mohnke, S. et al. Brain alterations in paedophilia: a critical review. Prog. Neurobiol. 122, 1–23 (2014).

    Article  PubMed  Google Scholar 

  17. Scarpazza, C. et al. Idiopathic and acquired pedophilia as two distinct disorders: an insight from neuroimaging. Brain Imaging Behav. 15, 2681–2692 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eickhoff, S. B. et al. Activation likelihood estimation meta-analysis revisited. Neuroimage 59, 2349–2361 (2012).

    Article  PubMed  Google Scholar 

  19. Eickhoff, S. B. et al. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926. (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Turkeltaub, P. E. et al. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16, 765–780 (2002).

    Article  PubMed  Google Scholar 

  21. Turkeltaub, P. E. et al. Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum. Brain Mapp. 33, 1–13 (2012).

    Article  PubMed  Google Scholar 

  22. Yarkoni, T. et al. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Poeppl, T. B. et al. A view behind the mask of sanity: meta-analysis of aberrant brain activity in psychopaths. Mol. Psychiatry 24, 463–470 (2019).

    Article  PubMed  Google Scholar 

  24. Polisois-Keating, A. & Joyal, C. C. Functional neuroimaging of sexual arousal: a preliminary meta-analysis comparing pedophilic to non-pedophilic men. Arch. Sex. Behav. 42, 1111–1113 (2013).

    Article  PubMed  Google Scholar 

  25. Poeppl, T. B. et al. The functional neuroanatomy of male psychosexual and physiosexual arousal: a quantitative meta-analysis. Hum. Brain Mapp. 35, 1404–1421 (2014).

    Article  PubMed  Google Scholar 

  26. Stoleru, S. et al. Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: a review and meta-analysis. Neurosci. Biobehav. Rev. 36, 1481–1509 (2012).

    Article  PubMed  Google Scholar 

  27. Joyal, C. C. et al. The neurobiological origins of pedophilia: not that simple. J. Sex. Med. 16, 153–154 (2019).

    Article  PubMed  Google Scholar 

  28. Gerwinn, H. et al. Clinical characteristics associated with paedophilia and child sex offending—differentiating sexual preference from offence status. Eur. Psychiatry 51, 74–85 (2018).

    Article  PubMed  Google Scholar 

  29. Massau, C. et al. Executive functioning in pedophilia and child sexual offending. J. Int. Neuropsychol. Soc. 23, 460–470 (2017).

    Article  PubMed  Google Scholar 

  30. Dillien, T. et al. The neuropsychology of child sexual offending: a systematic review. Aggress. Violent Behav. 54, 101406 (2020).

    Article  Google Scholar 

  31. Turner, D. & Rettenberger, M. Neuropsychological functioning in child sexual abusers: a systematic review. Aggress. Violent Behav. 54, 101405 (2020).

    Article  Google Scholar 

  32. Bitran, D. & Hull, E. M. Pharmacological analysis of male rat sexual behavior. Neurosci. Biobehav. Rev. 11, 365–389 (1987).

    Article  PubMed  Google Scholar 

  33. Teodorov, E. et al. Prenatal treatment with picrotoxin promotes heterotypical sexual behavioral and neurochemical changes in male rat offspring. Brain Res. 1069, 113–119 (2006).

    Article  PubMed  Google Scholar 

  34. Teodorov, E. et al. Effects of perinatal picrotoxin and sexual experience on heterosexual and homosexual behavior in male rats. Neurotoxicol. Teratol. 24, 235–245 (2002).

    Article  PubMed  Google Scholar 

  35. Bernardi, M. M. et al. Maternal exposure to picrotoxin modifies the response of the GABAA receptor during sexual behavior of adult male rat offspring. Behav. Pharmacol. 23, 703–709 (2012).

    Article  PubMed  Google Scholar 

  36. Bernardi, M. M. et al. Maternal treatment with picrotoxin in late pregnancy improved female sexual behavior but did not alter male sexual behavior of offspring. Behav. Pharmacol. 24, 282–290 (2013).

    Article  PubMed  Google Scholar 

  37. Davis, A. M. et al. Developmental sex differences in amino acid neurotransmitter levels in hypothalamic and limbic areas of rat brain. Neuroscience 90, 1471–1482 (1999).

    Article  PubMed  Google Scholar 

  38. Ristow, I. et al. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex. Neuroimage Clin. 18, 335–341 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y. et al. Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brains of male mice. Nature 472, 95–99 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fernandez-Guasti, A. & Escalante, A. Role of presynaptic serotonergic receptors on the mechanism of action of 5-HT1A and 5-HT1B agonists on masculine sexual behaviour: physiological and pharmacological implications. J. Neural Transm. Gen. Sect. 85, 95–107 (1991).

    Article  PubMed  Google Scholar 

  41. Fernandez-Guasti, A., Escalante, A. & Agmo, A. Inhibitory action of various 5-HT1B receptor agonists on rat masculine sexual behaviour. Pharmacol. Biochem. Behav. 34, 811–816 (1989).

    Article  PubMed  Google Scholar 

  42. Fernandez-Guasti, A. et al. Stimulation of 5-HT1A and 5-HT1B receptors in brain regions and its effects on male rat sexual behaviour. Eur. J. Pharmacol. 210, 121–129 (1992).

    Article  PubMed  Google Scholar 

  43. Rodriguez-Manzo, G. et al. Participation of 5-HT(1B) receptors in the inhibitory actions of serotonin on masculine sexual behaviour of mice: pharmacological analysis in 5-HT(1B) receptor knockout mice. Br. J. Pharmacol. 136, 1127–1134 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Angoa-Perez, M. et al. Brain serotonin signaling does not determine sexual preference in male mice. PLoS ONE 10, e0118603 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jahn, K. et al. Serotonin system-associated genetic and epigenetic changes in pedophilia and child sexual offending. J. Psychiatr. Res. 145, 60–69 (2021).

    Article  PubMed  Google Scholar 

  46. Angoa-Perez, M. & Kuhn, D. M. Neuroanatomical dichotomy of sexual behaviors in rodents: a special emphasis on brain serotonin. Behav. Pharmacol. 26, 595–606 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cohen, L. J. & Galynker, I. Identifying psychological traits potentially subserving aberrant motivation or inhibitory failure in pedophilic behavior. Isr. J. Psychiatry Relat. Sci. 49, 280–290 (2012).

    PubMed  Google Scholar 

  48. Golec, K. et al. Aberrant orbitofrontal cortex reactivity to erotic cues in compulsive sexual behavior disorder. J. Behav Addict 10, 646–656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Klucken, T. et al. Altered appetitive conditioning and neural connectivity in subjects with compulsive sexual behavior. J. Sex. Med. 13, 627–636 (2016).

    Article  PubMed  Google Scholar 

  50. Liberg, B. et al. Neural and behavioral correlates of sexual stimuli anticipation point to addiction-like mechanisms in compulsive sexual behavior disorder. J. Behav. Addict. 11, 520–532 (2022).

    PubMed  PubMed Central  Google Scholar 

  51. Muller, V. I. et al. Ten simple rules for neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 84, 151–161 (2018).

    Article  PubMed  Google Scholar 

  52. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Brit. Med. J. 372, n71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nichols, H. & Molinder, I. Multiphasic Sex Inventory (Crime and Victim Psychology Specialists, 1984).

  54. Laird, A. R. et al. Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: validation of the Lancaster transform. Neuroimage 51, 677–683 (2010).

    Article  PubMed  Google Scholar 

  55. Eickhoff, S. B. et al. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 137, 70–85 (2016).

    Article  PubMed  Google Scholar 

  56. Eickhoff, S. B. et al. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32, 570–582 (2006).

    Article  PubMed  Google Scholar 

  57. Eickhoff, S. B. et al. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36, 511–521 (2007).

    Article  PubMed  Google Scholar 

  58. Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005).

    Article  PubMed  Google Scholar 

  59. Lancaster, J. L. et al. Automated Talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Collins, D. L. et al. Automatic 3-D model-based neuroanatomical segmentation. Hum. Brain Mapp. 3, 190–208 (1995).

    Article  Google Scholar 

  61. Dukart, J. et al. JuSpace: a tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps. Hum. Brain Mapp. 42, 555–566 (2021).

    Article  PubMed  Google Scholar 

  62. Gryglewski, G. et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage 176, 259–267 (2018).

    Article  PubMed  Google Scholar 

  63. Poldrack, R. A. et al. The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front. Neuroinform. 5, 17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Markello, R. D. et al. neuromaps: structural and functional interpretation of brain maps. Nat. Methods 19, 1472–1479 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Contributions

T.B.P. designed the study; S.B.E. gave conceptual advice. V.P., K.S. and T.B.P. gathered data for the meta-analyses. T.B.P. conducted the meta-analyses with advice of S.B.E. J.D. and T.B.P. conducted the neurotransmitter analyses. J.D. performed the gene expression analyses. J.Y.H. and R.D.M. provided the behavioral profiling. G.S. and T.B.P. wrote the manuscript. A.M., I.R. and M.W. discussed the results and implications. All authors commented on the manuscript at all stages.

Corresponding author

Correspondence to Timm B. Poeppl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Kirsten Jordan, Cristina Scarpazza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1 and 2 and references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnellbächer, G.J., Dukart, J., Hansen, J.Y. et al. Aberrant brain activity in pedophilia links to receptor distribution, gene expression, and behavior. Nat. Mental Health 1, 615–622 (2023). https://doi.org/10.1038/s44220-023-00105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00105-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing