Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders

Abstract

Genetic liability to substance use disorders can be parsed into loci that confer general or substance-specific addiction risk. We report a multivariate genome-wide association meta-analysis that disaggregates general and substance-specific loci from published summary statistics of problematic alcohol use, problematic tobacco use, cannabis use disorder and opioid use disorder in a sample of 1,025,550 individuals of European descent and 92,630 individuals of African descent. Nineteen independent single-nucleotide polymorphisms were genome-wide significant (P < 5 × 10–8) for the general addiction risk factor (addiction-rf), which showed high polygenicity. Across ancestries, PDE4B was significant (among other genes), suggesting dopamine regulation as a cross-substance vulnerability. An addiction-rf polygenic risk score was associated with substance use disorders, psychopathologies, somatic conditions and environments associated with the onset of addictions. Substance-specific loci (9 for alcohol, 32 for tobacco, 5 for cannabis and 1 for opioids) included metabolic and receptor genes. These findings provide insight into genetic risk loci for substance use disorders that could be leveraged as treatment targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot of the addiction-rf GWAS results.
Fig. 2: Manhattan plot of the transcriptome-wide association study results for addiction-rf.
Fig. 3: PheWAS of genetic correlations using MASSIVE.
Fig. 4: Polygenic risk score prediction in Yale–Penn 3.

Similar content being viewed by others

Data availability

The MVP summary statistics were obtained via an approved dbGaP application (phs001672.v4.p1). For details on the MVP, see https://www.research.va.gov/mvp/ and ref. 76. This research is based on data from the MVP, Office of Research and Development, Veterans Health Administration, and was supported by the Veterans Administration Cooperative Studies Program award G002.

Publicly available data were also downloaded from the psychiatric genomics consortium (https://www.med.unc.edu/pgc/) and the GSCAN consortium (https://conservancy.umn.edu/handle/11299/201564).

The datasets used for the BioVU analyses described were obtained from Vanderbilt University Medical Center’s biorepository, which is supported by numerous sources: institutional funding, private agencies and federal grants. These include the National Institutes of Health-funded Shared Instrumentation grant S10RR025141; and Clinical and Translational Science Awards (CTSA) grants UL1TR002243, UL1TR000445 and UL1RR024975. Genomic data are also supported by investigator-led projects that include U01HG004798, R01NS032830, RC2GM092618, P50GM115305, U01HG006378, U19HL065962 and R01HD074711; and additional funding sources listed at https://victr.vumc.org/biovu-funding/.

Data from Yale–Penn 1 are available through dbGAP accession no phs000425.v1.p1 including 1,889 African American subjects and 1,020 European-American subjects. Yale–Penn 1 data are also available through dbGAP accession no phs000952.v1.p1 including 1,531 African American subjects and 1,339 self-reported European-American subjects. Summary statistics for all Yale–Penn data are available on request to J.G. (joel.gelernter@yale.edu).

References

  1. Degenhardt, L. et al. The impact of cohort substance use upon likelihood of transitioning through stages of alcohol and cannabis use and use disorder: findings from the Australian National Survey on Mental Health and Wellbeing. Drug Alcohol Rev. 37, 546–556 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peacock, A. et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction 113, 1905–1926 (2018).

    Article  PubMed  Google Scholar 

  3. Reitsma, M. B. et al. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and initiation among young people in 204 countries and territories, 1990–2019. Lancet Public Health 6, e472–e481 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Odds of dying. Injury Facts https://injuryfacts.nsc.org/all-injuries/preventable-death-overview/odds-of-dying/ (accessed 3 December 2021).

  5. Vanyukov, M. M. An eternal epidemic: 1. Why substance use problems persist. Preprint at PsyArXiv https://psyarxiv.com/tkm5u/ (2021).

  6. Deak, J. D. & Johnson, E. C. Genetics of substance use disorders: a review. Psychol. Med. 51, 2189–2200 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gelernter, J. & Polimanti, R. Genetics of substance use disorders in the era of big data. Nat. Rev. Genet. 22, 712–729 (2021).

  8. Zhou, H. et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 23, 809–818 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mallard, T. T. et al. Item-level genome-wide association study of the alcohol use disorders identification test in three population-based cohorts. Am. J. Psychiatry 179, 58–70 (2021).

  10. Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kranzler, H. R. et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 10, 1499 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hancock, D. B. et al. Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence. Mol. Psychiatry 23, 1911–1919 (2018).

    Article  PubMed  Google Scholar 

  14. Quach, B. C. et al. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat. Commun. 11, 5562 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou, H. et al. Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry 77, 1072–1080 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kendler, K. S. et al. Recent advances in the genetic epidemiology and molecular genetics of substance use disorders. Nat. Neurosci. 15, 181–189 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hatoum, A. S. et al. The addiction risk factor: a unitary genetic vulnerability characterizes substance use disorders and their associations with common correlates. Neuropsychopharmacology 47, 1739–1745 (2022).

  19. Abdellaoui, A., Smit, D. J. A., van den Brink, W., Denys, D. & Verweij, K. J. H. Genomic relationships across psychiatric disorders including substance use disorders. Drug Alcohol Depend. 220, 108535 (2021).

    Article  PubMed  Google Scholar 

  20. Waldman, I. D., Poore, H. E., Luningham, J. M. & Yang, J. Testing structural models of psychopathology at the genomic level. World Psychiatry 19, 350–359 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat. Genet. 54, 548–559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Duan, Q. et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 42, W449–W460 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bhattacharjee, S. et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am. J. Hum. Genet. 90, 821–835 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 15, e1007889 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 e17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Karlsson Linner, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367–1376 (2021).

  28. O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728–1734 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Association, A. P. Diagnostic and Statistical Manual (DSM-IV) (American Psychiatric Press, 1994).

    Google Scholar 

  30. Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin. Pharmacol. Ther. 84, 362–369 (2008).

    Article  PubMed  Google Scholar 

  31. Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).

    Article  PubMed  Google Scholar 

  32. Wise, R. A. & Robble, M. A. Dopamine and addiction. Annu. Rev. Psychol. 71, 79–106 (2020).

    Article  PubMed  Google Scholar 

  33. Hatoum, A.S. et al. Genome-wide association study shows that executive functioning is influenced by gabaergic processes and is a neurocognitive genetic correlate of psychiatric disorders. Biol. Psychiatry 93, 59–70 (2022).

  34. Snyder, G. L. & Vanover, K. E. PDE inhibitors for the treatment of schizophrenia. Adv Neurobiol 17, 385–409 (2017).

    Article  PubMed  Google Scholar 

  35. Olsen, C. M. & Liu, Q. S. Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities. Front. Biol. 11, 376–386 (2016).

    Article  Google Scholar 

  36. Burnette, E. M., Ray, L. A., Irwin, M. R. & Grodin, E. N. Ibudilast attenuates alcohol cue-elicited frontostriatal functional connectivity in alcohol use disorder. Alcohol. Clin. Exp. Res. 45, 2017–2028 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Grodin, E. N. et al. Ibudilast, a neuroimmune modulator, reduces heavy drinking and alcohol cue-elicited neural activation: a randomized trial. Transl. Psychiatry 11, 355 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, M. J., Briones, M. S., Heinzerling, K. G., Kalmin, M. M. & Shoptaw, S. J. Ibudilast attenuates peripheral inflammatory effects of methamphetamine in patients with methamphetamine use disorder. Drug Alcohol Depend. 206, 107776 (2020).

    Article  PubMed  Google Scholar 

  39. Schoeler, T. et al. Novel biological insights into the common heritable liability to substance involvement: a multivariate genome-wide association study. Biol. Psychiatry 93, 524–535 (2022).

  40. Sanchez-Roige, S., Palmer, A. A. & Clarke, T. K. Recent efforts to dissect the genetic basis of alcohol use and abuse. Biol. Psychiatry 87, 609–618 (2020).

    Article  PubMed  Google Scholar 

  41. Marees, A. T. et al. Genetic correlates of socio-economic status influence the pattern of shared heritability across mental health traits. Nat. Hum. Behav. 5, 1065–1073 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Khantzian, E. J. Addiction as a self-regulation disorder and the role of self-medication. Addiction 108, 668–669 (2013).

    Article  PubMed  Google Scholar 

  43. Thapar, A. & Rice, F. Family-based designs that disentangle inherited factors from pre- and postnatal environmental exposures: in vitro fertilization, discordant sibling pairs, maternal versus paternal comparisons, and adoption designs. Cold Spring Harb. Perspect. Med. 11, a038877 (2021).

  44. Haan, E. et al. Prenatal smoking, alcohol and caffeine exposure and maternal reported ADHD symptoms in childhood: triangulation of evidence using negative control and polygenic risk score analyses. Addiction 117, 1458–1471 (2021).

  45. Cornelis, M. C., Zaitlen, N., Hu, F. B., Kraft, P. & Price, A. L. Genetic and environmental components of family history in type 2 diabetes. Hum. Genet. 134, 259–267 (2015).

    Article  PubMed  Google Scholar 

  46. Wendt, F. R. et al. Multivariate genome-wide analysis of education, socioeconomic status and brain phenome. Nat. Hum. Behav. 5, 482–496 (2021).

    Article  PubMed  Google Scholar 

  47. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  49. International HapMap, C. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  Google Scholar 

  50. Grotzinger, A. D., de la Fuente, J., Privé, F., Nivard, M. G. & Tucker-Drob, E. M. Pervasive downward bias in estimates of liability-scale heritability in genome-wide association study meta-analysis: a simple solution. Biol. Psychiatry, 93, 29–36 (2023).

  51. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 50, 229–237 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Software 48, 1–36 (2012).

    Article  Google Scholar 

  53. Hu, L. & Bentler, P. M. Cutoff criteria for fit indexes in covariance strcuture analysis: conventional criteria versus new alternatives. Struct. Equation Modell. 6, 1 (1999).

    Article  Google Scholar 

  54. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Y., Qi, G., Park, J. H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018).

    Article  PubMed  Google Scholar 

  57. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Psych, E. C. et al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).

    Article  Google Scholar 

  59. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  Google Scholar 

  60. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. R. Stat. Soc. B 82, 1273–1300 (2020).

    Article  Google Scholar 

  62. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu, C. et al. Compound signature detection on LINCS L1000 big data. Mol. Biosyst. 11, 714–722 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Viechtbauer, W. Accounting for heterogeneity via random-effects models and moderator analyses in meta-analysis. Z. Psychol. 215, 104–121 (2007).

    Google Scholar 

  66. Sherva, R. et al. Genome-wide association study of cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiatry 73, 472–480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pierucci-Lagha, A. et al. Diagnostic reliability of the semi-structured assessment for drug dependence and alcoholism (SSADDA). Drug Alcohol Depend. 80, 303–312 (2005).

    Article  PubMed  Google Scholar 

  68. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cuellar-Partida, G. et al. Complex-Traits Genetics Virtual Lab: A community-driven web platform for post-GWAS analyses. Preprint at bioRxiv https://doi.org/10.1101/518027 (2021).

  73. Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics 30, 2375–2376 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lisdahl, K. M. et al. Substance use patterns in 9-10 year olds: baseline findings from the adolescent brain cognitive development (ABCD) study. Drug Alcohol Depend. 227, 108946 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48 (2015).

    Article  Google Scholar 

  76. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cold Harbor Labroatory for posting a preprint of this work on MedRxiv (https://www.medrxiv.org/). The authors thank Million Veteran Program (MVP) staff, researchers and volunteers, who have contributed to MVP, and especially participants who previously served their country in the military and now generously agreed to enroll in the study. Funding: K01 AA030083 (A.S.H.), T32 DA007261 (A.S.H.), DA54869 (A.A., J.G., H.E.), R01 DA54750 (A.A., R.B.), K02 DA32573 (A.A.), R21 AA027827 (R.B.), U01 DA055367 (R.B.), K01 DA51759 (E.C.J.), K23 MH121792 (N.R.K.), DP1 DA54394 (S.S.-R.), T32 MH014276 (G.A.P.), R01 AA027522 (A.E.), F31 AA029934 (S.E.P.), R01 MH120219 (E.M.T.-D., A.D.G.), RF1 AG073593 (E.M.T.-D., A.D.G.), P30 AG066614 (E.M.T.-D.), P2CHD042849 (E.M.T.-D.), R33 DA047527 (R.P., G.A.P.) and T32 AA028259 (J.D.D.)

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.S.H. designed the study and conducted analyses. S.M.C.C., E.C.J., S.B.H., J.D.D., G.A.P., M.V.J., S.S.-R., S.E.P., N.R.K., I.H. and D.A.A.B. conducted various analyses. A.A., R.B., H.J.E. and J.G. supervised the study. A.D.G. and E.M.T.-D. provided statistical guidance. A.E., H.R.K., R.P., L.K.D. and S.S.-R. guided interpretation of key findings. A.S.H., H.J.E., J.G., R.B. and A.A. drafted the manuscript. A.S.H., S.M.C.C., J.D.D., M.V.J., S.E.P., N.R.K. and I.H. organized the data. The consortium members provided insight into various aspects of analyses and interpretation and data for some of the discovery GWAS that were inputs to these analyses. All named authors reviewed, edited and approved the submission.

Corresponding author

Correspondence to Alexander S. Hatoum.

Ethics declarations

Competing interests

H.R.K. is a member of advisory boards for Dicerna Pharmaceuticals, Sophrosyne Pharmaceuticals and Enthion Pharmaceuticals; a consultant to Sobrera Pharmaceuticals; and a member of the American Society of Clinical Psychopharmacology’s Alcohol Clinical Trials Initiative, which was supported in the last three years by Alkermes, Dicerna, Ethypharm, Lundbeck, Mitsubishi and Otsuka. H.R.K. and J.G. hold US Patent 10900,082: ‘Genotype-guided dosing of opioid agonists’ issued on 26 January 2021. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Ditte Demontis and Eske Derks for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and methods.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–22.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatoum, A.S., Colbert, S.M.C., Johnson, E.C. et al. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nat. Mental Health 1, 210–223 (2023). https://doi.org/10.1038/s44220-023-00034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00034-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing