Reducing the rate of global biodiversity loss, halting extinction risks, and preserving intact ecosystems are central to conservation biology1. The latest Kunming-Montreal Global Biodiversity Framework aims to safeguard large proportions of species and habitats2, and conservation biologists and ecologists rely on accurate and robust biodiversity data to effectively develop conservation priorities3,4. Despite the progress made to catalogue biodiversity on Earth5, there are persistent gaps in biodiversity knowledge across various areas6,7. Consolidating biodiversity information is often challenged by insufficient funding8, limited capacity to implement conservation on the ground, and issues related to national security9.

Armed conflicts and violent extremism have long been recognised as significant threats to national security, altering social stability9,10. The impacts of armed and sociopolitical conflicts on the environment and biodiversity have also gained considerable attention in recent years10,11. For instance, the world witnessed the destruction of forests during the Vietnam War9,12, the draining of Mesopotamian marshes during the Gulf War13, and a decline in wildlife during civil wars in the Democratic Republic of the Congo14. At the same time, the 21st-century wars in Afghanistan, Syria, and Ukraine continue to affect biodiversity at an alarming rate15,16,17,18. Undeniably, armed conflicts and violent extremism can lead to extensive habitat destruction, altering patterns of biodiversity. In fact, of the major armed conflicts between 1950 and 2000, over 90% occurred in countries with biodiversity hotspots, and 80% occurred directly within hotspot areas10. The environmental footprints of military activities, explosives, and landmines cause long-lasting damage to ecosystems, leading to the loss of critical habitats for diverse flora and fauna19. These activities significantly worsen the problem of biodiversity depletion by promoting unsustainable practices, which disturb delicate ecological equilibriums such as overharvesting species, habitat destruction, and deforestation20,21,22. Moreover, armed conflicts tend to undermine the effectiveness of environmental governance systems, enforce environmental regulations, and safeguard vulnerable ecosystems.

These warfare-driven threats to biodiversity prompted the United Nations (UN) General Assembly in 2001 to declare every 6th of November as the International Day for Preventing the Exploitation of the Environment in War and Armed Conflict23. Twenty-three years later, many gaps in policy and research still need to be addressed, especially in developing economies, where biodiversity capacity building remains insufficient. Biodiversity hotspots, protected areas, and indigenous territories lack protection under international humanitarian law during armed and sociopolitical conflicts22. Previous analyses have demonstrated how sociopolitical conflicts could negatively impact the documentation of biodiversity10,19, which consequently limits effective conservation. Yet, there is a lack of well-researched case studies24, particularly in the Philippines, a megadiverse country.

Mindanao is the second largest group of islands in the Philippines, consisting of 27 provinces and 33 cities within six administrative regions with an estimated population of 26,252,442 (24% of the country’s population), and its mainland is the seventh most populous island in the world25. Its large fertile landmass makes it a major raw material producer in the Philippines, producing around 40% of the country’s agricultural produce and 60% of agricultural exports26. In addition, owing to its unique biogeographical history and position, Mindanao is a biodiversity hotspot for diverse flora and fauna27,28. Mindanao has over 30 Key Biodiversity Areas (KBAs) that are globally significant sites for biodiversity conservation because of the high concentration of endemic and threatened species, including the globally threatened Philippine Eagle (Pithecophaga jefferyi), and other keystone species28,29,30,31.

Whilst Mindanao is known for its rich and diverse wildlife and valuable natural resources, the region confronts a disconcerting reality marked by a confluence of sociopolitical adversities encompassing armed conflicts, religious tensions, feuds among clans, abductions, and other incidents of violence that paint a grim picture of the region32. The history of war and armed conflict in Mindanao is complex32,33, which can be traced back to the colonial era when the Philippines was under Spanish rule during the 16th century. Spanish colonisers encountered resistance from Muslim communities in Mindanao, who fought against their conversion to Christianity and the imposition of colonial rule34. In the 21st century, the Philippine government faced multiple parallel domestic armed conflicts and violence35. Data from the United Nations Office for the Coordination of Humanitarian Affairs (OCHA) have estimated that Mindanao has experienced more than half (53%) of the sociopolitical conflicts in the Philippines from 1989 to the present36 (Fig. 1).

Fig. 1: Distribution of war and conflict in the Philippines.
figure 1

a Density occurrence, b temporal patterns, and c average number of conflict events in the Philippines from 1989 to 2021 based on the UN OCHA database33.

Contemporary conflicts spanning 60 years in Mindanao might lead to considerable ecological and environmental degradation. Moreover, the collection and analysis of biodiversity information may have been significantly impeded in areas facing sociopolitical and armed conflicts. Apart from direct environmental impacts, sociopolitical conflicts can disrupt research activities, hinder access to remote or affected areas, and create risks for scientists and conservation biologists20,21,37. This, in turn, limits our ability to gather accurate data on local flora and fauna, which is essential for making informed decisions about biodiversity conservation and management. Recent Philippine-wide assessments have highlighted differences in survey efforts, notably the low number of studies and recorded species in Mindanao (for example, in bats38 and primates39). However, the lack of formal studies linking armed conflict to biodiversity knowledge shortfalls in the Philippines is a significant gap.

Addressing the biodiversity knowledge shortfall is crucial for understanding species distribution, the extent of the environmental impacts of conflict, formulation of effective policies and strategies to mitigate these effects, and promoting sustainable development and conservation in the region. Here, we present a perspective highlighting the link between sociopolitical conflicts and biodiversity knowledge shortfalls6, specifically in the context of the Southern Philippines. To gain insight into the influence of sociopolitical conflicts on species richness and occurrence records in Mindanao, we analysed the spatial distribution pattern of biodiversity data and remote sensing variables related to habitat transformation (namely tree cover and density, and forest height) within Mindanao and their possible association with sociopolitical conflict events between 2000 and 2021. Finally, we identified meaningful approaches to address biodiversity shortfalls in conflicted areas.


Patterns of biodiversity knowledge shortfalls

Our analysis revealed how sociopolitical conflict promotes gaps in biodiversity knowledge within a biodiverse island in the Philippines. First, a total of 2174 conflicts (103.52 conflicts/year) were recorded in Mindanao from 2000 to 2021, with the highest levels of violence recorded in Sulu (mean = 82 annually; 18%) and Maguindanao (mean = 329 annually; 15%) provinces (Fig. 2). This has an impact on observed biodiversity. We found a significant difference in observed species richness between high- (mean = 0.50 ± 1.60) and low-conflict (mean = 1.27 ± 2.37) areas (Mann–Whitney U test = 1340, p = 0.0027) (Fig. 3).

Fig. 2: Distribution of war and conflict in Mindanao relative to its provinces.
figure 2

a Spatial distribution of species occurrence records (dots) and density of sociopolitical conflict events in Mindanao from 2000 to 2021 and b comparison of conflict events and recorded species richness at the provincial level.

Fig. 3: Differences in species richness between low- and high-conflict areas.
figure 3

a Comparison of normalised species richness among taxonomic groups and b overall group comparison between low- and high-conflict areas. Note: ** indicates significance at p < 0.001; whiskers represent 95% CI intervals.

We then modelled the link between species occurrence records and conflict events in Mindanao at the provincial level. The best model for predicting spatial variation in species occurrence records (species record ~1 + conflict events + average distance from conflict events + taxonomic groups, AIC = 7864.53) showed that an increase in the number of conflict events was associated with lower recorded species richness (β = –0.002, p < 0.0001) (Fig. 4a). Conversely, we showed that the spatial distribution of species richness was higher in areas farther away from conflict events (β = 0.003, p < 0.0001) (Fig. 4b), particularly for insects (β = 2.067, p < 0.0001) and birds (β = 1.545, p < 0.0001).

Fig. 4: Relationship between conflict and distance from species occurrence.
figure 4

Visualised results of the generalised linear model (Poisson GLM) showing the association between species richness, a frequency of events, and b average distance at the provincial level. Note: Shading represents the 95% CI. Graphics were from Microsoft Office.

Conflict in forests and protected areas

The spatial distribution of conflict events varied across habitat types (χ2 = 716, df = 6, p < 0.0001). The majority of the conflict events fell within open habitats, such as agricultural areas (61%) and grasslands (19%), with only 6% of the recorded conflict events from 2000 to 2021 within protected areas. Moreover, we found a significant negative correlation between a number of fatalities with tree density (Pearson’s r = −0.05, p = 0.013) and tree cover (%) (Pearson’s r = −0.06, p = 0.002) but not with canopy height (Pearson’s r = −0.04, p = 0.054).


Our findings provide valuable insights into the relationship between sociopolitical conflict and shortfalls of biodiversity knowledge in the Philippines. First, our analysis showed that species richness and occurrence decreased in areas with higher numbers and distances to conflict but were taxonomically dependent. Birds and insects exhibited a more robust response to the dependent variables than other taxonomic groups. This can be attributed to their greater detectability, making them easier to sample and collect than other groups like mammals and herptiles28,31,40. Unlike these groups, birds and insects are often more conspicuous and exhibit behaviours and characteristics that facilitate easier observation and data collection. This makes them useful indicators of changes in species turnover in conflict zones24. Here, we posit that in high-conflict areas, the number of species or their populations have likely declined, potentially resulting in observed biodiversity that falls well below the expected levels due to conflict-related pressures. Another potential reason could be the difficulty in recording and inventorying biodiversity within highly conflicted areas. These areas often require staying in the field, which can be challenging and may deter biologists from making efforts to study biodiversity owing to security risks. Scientists often face challenges when conducting fieldwork in regions that experience ongoing disputes or unstable political situations. These range from personal safety concerns to logistical difficulties in accessing remote and unstable areas. Consequently, it may be impractical to conduct extensive biodiversity assessments in areas marked by high levels of conflict.

Although most areas in Mindanao are now relatively accessible, such as the Ligawasan Marsh in the BARMM region30, conducting biodiversity research remains a challenge because of the fear brought about by past conflict events and the disruption of local peace and order in some areas. Several non-state armed groups operate in Mindanao, particularly in Maguindanao, Lanao Del Sur, Basilan, Sulu, and Tawi-Tawi41. Other violent tensions, such as clan wars or ‘rido’ and political disputes, brought brutal incidents, such as the Maguindanao massacre in 201142. Another example was the kidnapping of bird watchers in Tawi-Tawi by the Abu Sayyaf group in 201243, which prompted foreign and local authorities to advise their citizens, including biodiversity researchers, to refrain from travelling or visiting Mindanao. In regions where security risks impede the ability of scientists to conduct biodiversity assessments, documented biodiversity may underrepresent the actual diversity of species. This disparity can have profound implications for conservation efforts and for our understanding of the true biodiversity status of conflict-stricken regions. For example, heavily conflicted areas such as Basilan, Zamboanga del Norte, Tawi-Tawi, Zamboanga Sibugay, Sulu, and Isabela remain lacking biodiversity information in the past two decades40.

While it is clear that war and conflict impede filling in existing knowledge gaps, the complex interplay of conflict, governmental policies, and their impact on biodiversity conservation in conflict areas constitutes a nuanced and multifaceted subject44. Although sociopolitical conflict can be acknowledged as offering transitory advantages to biodiversity conservation by creating no-go zones and improving vegetation recovery45, our evidence from the Philippines tends to be negative. Our study revealed that areas with high conflict levels, as indicated by high fatality rates, had lower tree cover and forest density. We argue that a greater variety of plants and animals may thrive in low-conflict areas, which are typically characterised by more intact ecosystems than in high-conflict areas46,47,48. Moreover, our current finding aligns with many previous studies suggesting that conflict zones often experience increased habitat destruction, ecosystem disruption, and wildlife population reduction due to the lack of statutory regulations and challenging implementation of environmental policies in high-conflict areas10,11,49,50. However, our results need careful interpretation, and it is crucial to explore whether the observed relationship is causal or merely correlational, considering factors like human displacement and changes in land use during conflicts24,49,51. If armed conflict indeed proves to be a significant driver of biodiversity loss in Mindanao, it has profound implications for conservation efforts in conflict-affected regions, necessitating collaborative strategies among policymakers, conservationists, and humanitarian organisations working in the region.

Discussions on the impact of armed conflict and violent extremism vis-à-vis biodiversity remain the elephant in the room, which is often neglected in biodiversity prioritisation efforts10, especially in the Philippines52. Specific connections between armed conflict and biodiversity conservation have garnered limited attention53. Schulte to Bühne et al. 54 stated that the current legal and policy frameworks regulating global biodiversity conservation do not address the challenges of conducting activities in areas affected by conflicts. They added that to incorporate conflict-sensitive protection into international policymaking, peace and scientific organisations should openly address the consequences of armed conflicts on biodiversity. Hulme55 and Hemptinne56 suggested that international environmental laws (IEL) should be reinforced and incorporate the principles of international humanitarian laws (IHL) as a tool and guide to protect the environment during and post-conflict regimes.

Another significant challenge in effectively implementing conservation initiatives in conflicted areas in the environment is the absence of baseline evidence for biodiversity status57. The absence of comparative data on pre- and post-conflict conditions adds complexity to our understanding of the impacts of conflict on biodiversity. Moreover, implementing biodiversity regulations and policies is particularly problematic in regions affected by conflict where maintaining law and order is difficult. Resource allocation, a key governmental responsibility, is vital for conservation initiatives; however, in conflict zones, financial resources may be redirected to address immediate security concerns, potentially affecting biodiversity conservation efforts10,53. Moreover, the direct and indirect impacts of sociopolitical conflicts on biodiversity, including habitat destruction and community displacement, highlight the need for mainstream post-conflict initiatives to rehabilitate and restore ecosystems37.

A concerted effort must be made to thoroughly document and monitor regions with notable shortfalls in biodiversity, to identify areas where gaps exist in biodiversity data, and to establish comparative monitoring assessments that employ standardised, transparent, accessible, and reproducible methods to accurately document unrecorded biodiversity. This is crucial for ensuring a comprehensive understanding of the state of biodiversity and for making informed decisions regarding conservation and management efforts28,40. Additionally, conservation biologists can work with local communities in conflict-affected areas to establish community-centric conservation projects. Strengthening the engagement of local communities to build awareness ensures sustainable resource management and provides economic alternatives to destructive activities. However, specific actions are needed to effectively address biodiversity shortfalls in conflict areas. Conservation biologists must integrate conflict-sensitive approaches into the planning processes. This involves considering the geopolitical context, understanding the conflict dynamics, and adapting conservation strategies accordingly. By aligning conservation efforts with local realities, we can better navigate the challenges posed by conflicts. Here, we recommend meaningful actions and considerations to bolster biodiversity conservation efforts in areas affected by sociopolitical conflict during the post-conflict period (Box 1).

In conclusion, our research sheds light on the complex and multifaceted relationship between sociopolitical conflict and biodiversity knowledge shortfalls, which restricts our understanding of biodiversity patterns in areas affected by war and conflict. Additionally, conflict zones are difficult to explore, leading to a lack of dependable biodiversity information, such as current threats and their influence on species and ecosystems. Moreover, our proposed actions extend beyond Mindanao and offer applicability to other regions that face comparable challenges. We emphasise that there is no single silver bullet that resolves the challenges brought about by sociopolitical conflicts with biodiversity. Conservation efforts in conflict zones require a multidimensional approach that addresses both ecological and sociopolitical aspects of the situation. Governmental efforts should focus on conflict prevention, post-conflict environmental restoration, initiatives to strengthen environmental governance, and engaging local communities to ensure the sustainable management of natural resources. Appropriate policies must be implemented to create a supportive environment for long-term biodiversity conservation efforts. Advocating policies and frameworks, such as the recent Kunming-Montreal Global Biodiversity Framework2, to bolster biodiversity conservation in conflict areas is crucial in addressing the inadequacies in these regions while simultaneously ensuring balanced benefits from nature.

Ensuring the security of conservation biologists and personnel, including park rangers, is paramount for implementing policies. Therefore, it is necessary to integrate conservation efforts into broader national security strategies10. Future studies should examine the extent of conflict that is identified as off-limits for researchers and conservationists. Additionally, post-conflict reconstruction and peacebuilding initiatives can offer opportunities to incorporate sustainable development and conservation measures, facilitating the restoration and protection of biodiversity in regions affected by conflict37,53, especially in countries with developing economies, where the overlap between conflict and biodiversity is particularly high.


Comparing species richness and occurrence in conflict areas

We compared and determined the link between sociopolitical conflict and species occurrence in Mindanao. We first obtained biodiversity data from the MOBIOS+ database40 and conflict-related information for the Philippines from the UN-OCHA36 from 2000 to 2021. For biodiversity data, we filtered the dataset and only included biodiversity data records for insects, arachnids, fishes, amphibians, reptiles, birds, and mammals. We standardised the species occurrence data by dividing the values by the duration of the dataset and subsequently analysed the differences in species occurrence by comparing the average species richness per year between provinces with low (<10 conflicts per year) and high (>10 conflicts per year) levels of conflict using the Mann–Whitney U test.

We then assessed the association between the conflict events and species occurrence. To do this, we measured the distance (in m) of species occurrence records to the nearest conflict events using the ‘join attributes by nearest’ in QGIS58. Employing a Poisson generalised linear model, we utilised the Gamlj module within the open-source software JAMOVI 2.3.19 to predict the impacts of taxonomic groups, distance from conflict areas, and frequency of conflict events on species richness at the provincial level59,60. We built two GLM candidates and evaluated the best model based on the lowest values of the corrected Akaike information criterion (AICc) and Akaike weight (wAICc)61.

Mapping conflicts events distribution

Assessing the impact of war and conflict on the environment is difficult in the absence of pre-war conflict data, which serves as a baseline. To provide insight into the relationship between conflict and the environment, we initially mapped and sampled conflict events to determine whether they were covered within the protected zones. We then correlated tree cover (%)62, tree density47, and forest canopy height63 with the number of fatalities using Pearson’s correlation coefficient (r). In our analysis, we used the number of fatalities per conflict event as an arbitrary measure, assuming that a higher fatality count corresponds to an increased level of conflict within a specific area.