Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Landscape-scale benefits of protected areas for tropical biodiversity

An Author Correction to this article was published on 09 April 2024

A Publisher Correction to this article was published on 05 January 2024

This article has been updated

Abstract

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2,3,4,5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effectiveness of PAs depends on safeguarding multiple facets of biodiversity.
Fig. 2: Site accessibility across Southeast Asia.
Fig. 3: All facets of bird diversity are higher inside PAs than outside PAs.
Fig. 4: All facets of mammal diversity outside PAs are higher near large PAs than near than small PAs.
Fig. 5: All facets of bird diversity outside PAs are higher near large PAs than near small PAs, but these differences are smaller than for mammals.

Similar content being viewed by others

Data availability

Data used in the mixed-effects modelling analysis are available at https://doi.org/10.6084/m9.figshare.22527298.v1. Rasters (1-km resolution) for the study area for the GEDI-derived forest structural covariates and estimated site accessibility are available at https://rcdata.nau.edu/geode_data/SEA_vertebrate_diversity_rasters/.

Code availability

Codes for analysis (in the R programming language) are available at https://doi.org/10.5281/zenodo.7796347.

Change history

References

  1. UN. Kunming Declaration. Declaration from the High-Level Segment of the UN Biodiversity Conference 2020 (Part 1) Under the Theme: “Ecological Civilization: Building a Shared Future for All Life on Earth” (Final Draft) (United Nations Biodiversity Conference, 2021).

  2. Chen, C. et al. Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conserv. Lett. 15, e12865 (2022).

    Article  Google Scholar 

  3. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).

    Article  PubMed  Google Scholar 

  5. Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).

    Article  ADS  PubMed  Google Scholar 

  7. Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Bode, M., Tulloch, A. I., Mills, M., Venter, O. & Ando, A. W. A conservation planning approach to mitigate the impacts of leakage from protected area networks. Conserv. Biol. 29, 765–774 (2015).

    Article  PubMed  Google Scholar 

  9. Kriegel, M., Elias Ilosvay, X. E., von Dorrien, C. & Oesterwind, D. Marine protected areas: at the crossroads of nature conservation and fisheries management. Front. Mar. Sci. 8, 676264 (2021).

    Article  Google Scholar 

  10. Leverington, F., Costa, K. L., Pavese, H., Lisle, A. & Hockings, M. A global analysis of protected area management effectiveness. Environ. Manage. 46, 685–698 (2010).

    Article  ADS  PubMed  Google Scholar 

  11. Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geldmann, J. et al. Changes in protected area management effectiveness over time: a global analysis. Biol. Conserv. 191, 692–699 (2015).

    Article  Google Scholar 

  13. Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graham, V. et al. Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas. Sci. Rep. 11, 23760 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferraro, P. J. & Hanauer, M. M. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure. Proc. Natl Acad. Sci. USA 111, 4332–4337 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung, M. et al. The global exposure of species ranges and protected areas to forest management. Divers. Distrib. 28, 1487–1496 (2022).

    Article  Google Scholar 

  18. Coetzee, B. W., Gaston, K. J. & Chown, S. L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE 9, e105824 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article  Google Scholar 

  20. Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Naidoo, R. & Iwamura, T. Global-scale mapping of economic benefits from agricultural lands: implications for conservation priorities. Biol. Conserv. 140, 40–49 (2007).

    Article  Google Scholar 

  23. Arif, S. & MacNeil, M. A. Predictive models aren’t for causal inference. Ecol. Lett. 25, 1741–1745 (2022).

    Article  PubMed  Google Scholar 

  24. Pearl, J. & Mackenzie, D. The Book of Why: The New Science of Cause and Effect (Basic Books, 2018).

  25. Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2020).

    Article  PubMed  Google Scholar 

  26. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Tilker, A. et al. Habitat degradation and indiscriminate hunting differentially impact faunal communities in the Southeast Asian tropical biodiversity hotspot. Commun. Biol. 2, 396 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Valbuena, R. et al. Standardizing ecosystem morphological traits from 3D information sources. Trends Ecol. Evol. 35, 656–667 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Pillay, R. et al. Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nat. Ecol. Evol. 6, 1840–1849 (2022).

    Article  PubMed  Google Scholar 

  30. Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).

    Article  Google Scholar 

  32. Walpole, M. et al. Tracking progress toward the 2010 biodiversity target and beyond. Science 325, 1503–1504 (2009).

    Article  PubMed  Google Scholar 

  33. Marselis, S. M. et al. Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness. Global Ecol. Biogeogr. 29, 1799–1816 (2020).

    Article  Google Scholar 

  34. Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).

    Article  Google Scholar 

  35. Deith, M. C. & Brodie, J. F. Predicting defaunation: accurately mapping bushmeat hunting pressure over large areas. Proc. R. Soc. B 287, 20192677 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brodie, J. F. & Fragoso, J. M. Understanding the distribution of bushmeat hunting effort across landscapes by testing hypotheses about human foraging. Conserv. Biol. 35, 1009–1018 (2021).

    Article  PubMed  Google Scholar 

  37. Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1272 (2016).

    Article  Google Scholar 

  38. Kleinschroth, F., Laporte, N., Laurance, W. F., Goetz, S. J. & Ghazoul, J. Road expansion and persistence in forests of the Congo Basin. Nat. Sustain. 2, 628–634 (2019).

    Article  Google Scholar 

  39. Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17, e3000247 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bogoni, J. A., Percequillo, A. R., Ferraz, K. M. & Peres, C. A. The empty forest three decades later: lessons and prospects. BioTropica 55, 13–18 (2023).

    Article  Google Scholar 

  41. Stouffer, P. C. et al. Long‐term change in the avifauna of undisturbed Amazonian rainforest: ground‐foraging birds disappear and the baseline shifts. Ecol. Lett. 24, 186–195 (2021).

    Article  PubMed  Google Scholar 

  42. Brodie, J. F. & Gibbs, H. K. Bushmeat hunting as climate threat. Science 326, 364–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Di Lorenzo, M., Claudet, J. & Guidetti, P. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. J. Nat. Conserv. 32, 62–66 (2016).

    Article  Google Scholar 

  44. Chen, C. et al. Effects of law enforcement and community outreach on mammal diversity in a biodiversity hotspot. Conserv. Biol. 33, 612–622 (2019).

    Article  PubMed  Google Scholar 

  45. Oliveira, P. J. et al. Land-use allocation protects the Peruvian Amazon. Science 317, 1233–1236 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Brodie, J. F., Williams, S. & Garner, B. The decline of mammal functional and evolutionary diversity worldwide. Proc. Natl Acad. Sci. USA 118, e1921849118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brodie, J. F. Synergistic effects of climate change and agricultural land use on mammals. Front. Ecol. Environ. 14, 20–26 (2016).

    Article  Google Scholar 

  48. Legras, G., Loiseau, N. & Gaertner, J.-C. Functional richness: overview of indices and underlying concepts. Acta Oecologica 87, 34–44 (2018).

    Article  ADS  Google Scholar 

  49. Brodie, J. F., Redford, K. H. & Doak, D. F. Ecological function analysis: incorporating species roles into conservation. Trends Ecol. Evol. 33, 840–850 (2018).

    Article  PubMed  Google Scholar 

  50. Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. https://doi.org/10.1016/0006-3207(92)91201-3 (1992).

  51. Fink, D. et al. A double machine learning trend model for citizen science data. Preprint at https://doi.org/10.48550/arXiv.2210.15524 (2022).

  52. Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).

    Article  PubMed  Google Scholar 

  53. Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).

    Article  PubMed  Google Scholar 

  54. O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).

    Article  Google Scholar 

  55. Skidmore, A. K. & Pettorelli, N. Agree on biodiversity metrics to track from space: ecologists and space agencies must forge a global monitoring strategy. Nature 523, 403–406 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Kerley, G. I., Kowalczyk, R. & Cromsigt, J. P. Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat? Ecography 35, 519–529 (2012).

    Article  ADS  Google Scholar 

  57. Alves-Pinto, H. et al. Opportunities and challenges of other effective area-based conservation measures (OECMs) for biodiversity conservation. Perspect. Ecol. Conserv. 19, 115–120 (2021).

    Google Scholar 

  58. UNEP Convention on Biological Diversity, Open-ended working group on the post-2020 global biodiversity framework. Expert Input to the Post-2020 Global Biodiversity Framework: Transformative Actions on All Drivers of Biodiversity Loss are Urgently Required to Achieve the Global Goals by 2050 (CBD, 2022).

  59. Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Climate, Community and Biodiversity Project Design Standards, 1st edn. (Climate, Community and Biodiversity Alliance, 2005).

  61. Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).

    Article  Google Scholar 

  62. Callaghan, C., Lyons, M., Martin, J., Major, R. & Kingsford, R. Assessing the reliability of avian biodiversity measures of urban greenspaces using eBird citizen science data. Avian Conserv. Ecol. 12, https://doi.org/10.5751/ACE-01104-120212 (2017).

  63. Neate-Clegg, M. H., Horns, J. J., Adler, F. R., Aytekin, M. Ç. K. & Şekercioğlu, Ç. H. Monitoring the world’s bird populations with community science data. Biol. Conserv. 248, 108653 (2020).

    Article  Google Scholar 

  64. Robinson, O. J. et al. Using citizen science data in integrated population models to inform conservation. Biol. Conserv. 227, 361–368 (2018).

    Article  Google Scholar 

  65. Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article  Google Scholar 

  66. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Dobbins, M., Sollmann, R., Menke, S., Almeyda Zambrano, A. & Broadbent, E. An integrated approach to measure hunting intensity and assess its impacts on mammal populations. J. Appl. Ecol. 57, 2100–2111 (2020).

    Article  Google Scholar 

  68. Human Development Report 2020: The Next Frontier—Human Development and the Anthropocene (United Nations Development Programme, 2020).

  69. WDPA. World Database on Protected Areas. (International Union for the Conservation of Nature, 2022).

  70. Gräler, B., Pebesma, E. J. & Heuvelink, G. B. Spatio-temporal interpolation using gstat. R J. 8, 204 (2016).

    Article  Google Scholar 

  71. R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2022).

  72. Matheron, G. Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963).

    Article  CAS  Google Scholar 

  73. Hsieh, T. C., Ma, K. H. & Chao, A. 2022 iNEXT: iNterpolation and EXTrapolation for species diversity. R version 3.0.0 http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2022).

  74. Kays, R. et al. An empirical evaluation of camera trap study design: How many, how long and when? Methods Ecol. Evol. 11, 700–713 (2020).

    Article  Google Scholar 

  75. Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).

    Article  Google Scholar 

  76. Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article  Google Scholar 

  77. Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    Article  PubMed  Google Scholar 

  79. Brodie, J. F. Data for ‘Landscape-scale benefits of protected areas for tropical biodiversity’. figshare https://doi.org/10.6084/m9.figshare.22527295.v1 (2023).

  80. Shrier, I. & Platt, R. W. Reducing bias through directed acyclic graphs. BMC Med. Res. Method. 8, 70 (2008).

    Article  Google Scholar 

  81. Textor, J., Van der Zander, B., Gilthorpe, M. S., Liśkiewicz, M. & Ellison, G. T. Robust causal inference using directed acyclic graphs: the R package ‘dagitty’. Int. J. Epidemiol. 45, 1887–1894 (2016).

    PubMed  Google Scholar 

  82. Hakkenberg, C. R. & Goetz, S. J. Climate mediates the relationship between plant biodiversity and forest structure across the United States. Global Ecol. Biogeogr. 30, 2245–2258 (2021).

    Article  Google Scholar 

  83. Stuart, E. A., King, G., Imai, K. & Ho, D. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. https://doi.org/10.18637/jss.v042.i08 (2011).

  84. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models. R version 3.1-153 (2022).

  85. Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).

    Article  Google Scholar 

  86. Brodie, J. F., Mohd‐Azlan, J. & Schnell, J. K. How individual links affect network stability in a large‐scale, heterogeneous metacommunity. Ecology 97, 1658–1667 (2016).

    Article  PubMed  Google Scholar 

  87. Armsworth, P. R. et al. Is conservation right to go big? Protected area size and conservation return-on-investment. Biol. Conserv. 225, 229–236 (2018).

    Article  Google Scholar 

  88. Joppa, L. N., Loarie, S. R. & Pimm, S. L. On the protection of “protected areas”. Proc. Natl Acad. Sci. USA 105, 6673–6678 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to numerous local communities, PA and government agency staff, research assistants and other partners for supporting the field data collection. Research permissions were granted by appropriate forestry and conservation government departments in each country. Special thanks are given to the Sarawak State Government, Sarawak Forestry Corporation, Forest Department Sarawak, Sabah Biodiversity Centre, the Danum Valley Management Committee, the Forest Research Institute Malaysia (FRIM), the Smithsonian Institute and the Tropical Ecology Assessment and Monitoring (TEAM) network, S. Bunyavejchewin and R. Sukmasuang. Support was provided by the United Nations Development Programme, NASA grants NNL15AA03C and 80NSSC21K0189, the National Geographic Society’s Committee for the Research and Exploration award #9384–13, the Australian Research Council Discovery Early Career Researcher Award DECRA #DE210101440, the Universiti Malaysia Sarawak, the Ministry of Higher Education Malaysia, Nanyang Technological University Singapore, the Darwin Initiative, Liebniz-IZW, and the Universities of Aberdeen, British Columbia, Montana and Queensland.

Author information

Authors and Affiliations

Authors

Contributions

J.F.B. conceived the study and analysed the data. J.F.B., J.M.-A., C.C., O.R.W., .S.W.T., P.J.W., E.M.S., A.N., J.H.M. and M.S.L. led the camera-trapping field work. M.C.M.D. generated the potential hunting pressure map, P.B. processed the GEDI data, and J.G.C.B. conducted the interpolation of the GEDI data. J.F.B. wrote the initial manuscript, with input from M.S.L.; all authors contributed to revising and rewriting.

Corresponding author

Correspondence to Jedediah F. Brodie.

Ethics declarations

Competing interests

Mammal data collection in one study area (out of 65) was funded by Sarawak Energy Berhad; no personnel from that agency participated in the data collection or analysis or reviewed the manuscript before it was submitted.

Peer review

Peer review information

Nature thanks Robert Bagchi, Erik Meijaard, Hao Tang, Morgan Tingley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1

Estimates of sampling completeness – the correspondence between the number of species detected at sampling locations and the number estimated from rarefaction-extrapolation (see Methods) for birds (panel a; Pearson’s r = 0.91) and mammals (b; r = 0.79), with 1 : 1 lines shown.

Extended Data Fig. 2 Directed acyclic graph of bird or mammal diversity in relation to exposure variables and covariates.

The structure of the graph shows how the influence of protected areas on diversity are de-confounded from the influence of forest structure and site accessibility.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodie, J.F., Mohd-Azlan, J., Chen, C. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023). https://doi.org/10.1038/s41586-023-06410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06410-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing