Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p38γ/δ activation alters cardiac electrical activity and predisposes to ventricular arrhythmia

Abstract

Ventricular fibrillation (VF) is a leading immediate cause of sudden cardiac death. There is a strong association between aging and VF, although the mechanisms are unclear, limiting the availability of targeted therapeutic interventions. Here we found that the stress kinases p38γ and p38δ are activated in the ventricles of old mice and mice with genetic or drug-induced arrhythmogenic conditions. We discovered that, upon activation, p38γ and p38δ cooperatively increase the susceptibility to stress-induced VF. Mechanistically, our data indicate that activated p38γ and p38δ phosphorylate ryanodine receptor 2 (RyR2) disrupt Kv4.3 channel localization, promoting sarcoplasmic reticulum calcium leak, Ito current reduction and action potential duration prolongation. In turn, this led to aberrant intracellular calcium handling, premature ventricular complexes and enhanced susceptibility to VF. Blocking this pathway protected genetically modified animals from VF development and reduced the VF duration in aged animals. These results indicate that p38γ and p38δ are a potential therapeutic target for sustained VF prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunoblot evaluation of p38γ/δ expression and phosphorylation with aging and in pro-arrhythmogenic models.
Fig. 2: p38γ/δ activation increases the susceptibility to stress-induced VF and a pro-arrhythmic cardiac phosphoproteome profile.
Fig. 3: Identification of RyR2 as a direct target of p38γ/δ.
Fig. 4: p38γ/δ activation due to MKK6 deficiency promotes RyR2 hyperphosphorylation and ventricular arrhythmias.
Fig. 5: MKK6-deficient cardiomyocytes are predisposed to ISO-induced abnormal SCR events.
Fig. 6: Transient outward potassium current is reduced, and APD and QT interval are prolonged, in MKK6 KO mice.
Fig. 7: p38γ deficiency reduces arrhythmia susceptibility and RyR2 phosphorylation in MKK6 KO mice.
Fig. 8: Proposed model for ventricular arrhythmia susceptibility mediated by increased p38γ/δ activity.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in the main article and associated files. Uncropped immunoblots are provided as Source Data. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE86 partner repository with the dataset identifier PXD045996.

References

  1. Srinivasan, N. T. & Schilling, R. J. Sudden cardiac death and arrhythmias. Arrhythm. Electrophysiol. Rev. 7, 111–117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adabag, A. S., Luepker, R. V., Roger, V. L. & Gersh, B. J. Sudden cardiac death: epidemiology and risk factors. Nat. Rev. Cardiol. 7, 216–225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Virani, S. S. et al. Heart disease and stroke statistics—2021 update. Circulation 143, E254–E743 (2021).

    Article  PubMed  Google Scholar 

  4. Huikuri, H. V., Castellanos, A. & Myerburg, R. J. Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Mirza, M., Strunets, A., Shen, W. K. & Jahangir, A. Mechanisms of arrhythmias and conduction disorders in older adults. Clin. Geriatr. Med. 28, 555–573 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hatch, F., Lancaster, M. K. & Jones, S. A. Aging is a primary risk factor for cardiac arrhythmias: disruption of intracellular Ca2+ regulation as a key suspect. Expert Rev. Cardiovasc. Ther. 9, 1059–1067 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka, Y. et al. Trends in cardiovascular mortality related to atrial fibrillation in the United States, 2011 to 2018. J. Am. Heart Assoc. 10, 20163 (2021).

    Article  Google Scholar 

  8. Zimetbaum, P. Antiarrhythmic drug therapy for atrial fibrillation. Circulation 125, 381–389 (2012).

    Article  PubMed  Google Scholar 

  9. Nikolic, I., Leiva, M. & Sabio, G. The role of stress kinases in metabolic disease. Nat. Rev. Endocrinol. 16, 697–716 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Canovas, B. & Nebreda, A. R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 22, 346–366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Romero-Becerra, R. et al. MKK6 deficiency promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR hyperactivation. eLife 11, e75250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Romero-Becerra, R., Santamans, A., Folgueira, C. & Sabio, G. p38 MAPK pathway in the heart: new insights in health and disease. Int. J. Mol. Sci. 21, 7412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. González-Terán, B. et al. P38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat. Commun. 7, 10477 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yan, J. et al. Stress signaling JNK2 crosstalk with CaMKII underlies enhanced atrial arrhythmogenesis. Circ. Res. 122, 821–835 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Landstrom, A. P., Dobrev, D. & Wehrens, X. H. T. Calcium signaling and cardiac arrhythmias. Circ. Res. 120, 1969–1993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel, P. J., Segar, R., Patel, J. K., Padanilam, B. J. & Prystowsky, E. N. Arrhythmia induction using isoproterenol or epinephrine during electrophysiology study for supraventricular tachycardia. J. Cardiovasc. Electrophysiol. 29, 1635–1640 (2018).

    Article  PubMed  Google Scholar 

  17. Bonne, G., Carrier, L., Richard, P., Hainque, B. & Schwartz, K. Familial hypertrophic cardiomyopathy. Circ. Res. 83, 580–593 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Carrier, L. et al. Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. Cardiovasc. Res. 63, 293–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Berul, C. I. et al. Ventricular arrhythmia vulnerability in cardiomyopathic mice with homozygous mutant myosin-binding protein C gene. Circulation 104, 2734–2739 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Brayson, D. & Shanahan, C. M. Current insights into LMNA cardiomyopathies: existing models and missing LINCs. Nucleus 8, 17–33 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Santamans, A. M. et al. p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biol. 19, e3001447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  Google Scholar 

  23. Bagwan, N. et al. Comprehensive quantification of the modified proteome reveals oxidative heart damage in mitochondrial heteroplasmy. Cell Rep. 23, 3685–3697 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Priori, S. G. & Chen, S. R. W. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ. Res. 108, 871–883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dobrev, D. & Wehrens, X. H. T. Role of RyR2 phosphorylation in heart failure and arrhythmias. Circ. Res. 114, 1311–1319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nerbonne, J. M. Mouse models of arrhythmogenic cardiovascular disease: challenges and opportunities. Curr. Opin. Pharmacol. 15, 107–114 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Choy, L., Yeo, J. M., Tse, V., Chan, S. P. & Tse, G. Cardiac disease and arrhythmogenesis: mechanistic insights from mouse models. Int. J. Cardiol. Heart Vasc. 12, 1–10 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Pandit, S. V. & Jalife, J. Rotors and the dynamics of cardiac fibrillation. Circ. Res. 112, 849–862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCauley, M. D. & Wehrens, X. H. T. Targeting ryanodine receptors for anti-arrhythmic therapy. Acta Pharmacol. Sin. 32, 749–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Campbell, H. M. et al. Loss of SPEG inhibitory phosphorylation of ryanodine receptor type-2 promotes atrial fibrillation. Circulation 142, 1159–1172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, Y.-T. et al. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. Proc. Natl Acad. Sci. USA 112, E1669–E1677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y. et al. Human RyR2 (ryanodine receptor 2) loss-of-function mutations: clinical phenotypes and in vitro characterization. Circ. Arrhythm. Electrophysiol. 14, e010013 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Jiang, D. et al. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR). Proc. Natl Acad. Sci. USA 101, 13062–13067 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bers, D. M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 70, 23–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Scharf, M. et al. Mitogen-activated protein kinase-activated protein kinases 2 and 3 regulate SERCA2a expression and fiber type composition to modulate skeletal muscle and cardiomyocyte function. Mol. Cell. Biol. 33, 2586–2602 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi, B. R., Burton, F. & Salama, G. Cytosolic Ca2+ triggers early afterdepolarizations and torsade de pointes in rabbit hearts with type 2 long QT syndrome. J. Physiol. 543, 615–631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chelu, M. G. et al. Calmodulin kinase II–mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J. Clin. Invest. 119, 1940–1951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, Z. et al. Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents? Am. J. Physiol. Heart Circ. Physiol. 302, 1636–1644 (2012).

    Article  Google Scholar 

  39. Barry, D. M., Xu, H., Schuessler, R. B. & Nerbonne, J. M. Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 α subunit. Circ. Res. 83, 560–567 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. El-Haou, S. et al. Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ. Res. 104, 758–769 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Sabio, G. et al. p38γ regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J. 24, 1134–1145 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noseda, R. et al. Kif13b regulates PNS and CNS myelination through the Dlg1 scaffold. PLoS Biol. 14, e1002440 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morita, N., Mandel, W. J., Kobayashi, Y. & Karagueuzian, H. S. Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J. Arrhythm. 30, 389–394 (2014).

    Article  PubMed  Google Scholar 

  44. Sohns, C. & Marrouche, N. F. Atrial fibrillation and cardiac fibrosis. Eur. Heart J. 41, 1123–1131 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Yan, J. et al. c-Jun N-terminal kinase activation contributes to reduced connexin43 and development of atrial arrhythmias. Cardiovasc Res 97, 589–597 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zipes, D. P. et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. J. Am. Coll. Cardiol. 48, e247–e346 (2006).

    Article  PubMed  Google Scholar 

  47. Merentie, M. et al. Efficacy and safety of myocardial gene transfer of adenovirus, adeno-associated virus and lentivirus vectors in the mouse heart. Gene Ther. 23, 296–305 (2015).

    Article  PubMed  Google Scholar 

  48. Li, Z. et al. Age-induced augmentation of p38 MAPK phosphorylation in mouse lung. Exp. Gerontol. 46, 694–702 (2011).

    CAS  PubMed  Google Scholar 

  49. Preston, C. C. et al. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech. Ageing Dev. 129, 304–312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seppet, E. et al. Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery. Mol. Cell. Biochem. 270, 49–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Morita, N. et al. Glycolytic inhibition causes spontaneous ventricular fibrillation in aged hearts. Am. J. Physiol. Heart Circ. Physiol. 301, H180–H191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Delise, P. & Sciarra, L. Sudden cardiac death in patients with ventricular preexcitation. Card. Electrophysiol. Clin. 12, 519–525 (2020).

    Article  PubMed  Google Scholar 

  53. Brembilla-Perrot, B. et al. Inducible multiform ventricular tachycardia in Wolff–Parkinson–White syndrome. Heart 58, 89–95 (1987).

    Article  CAS  Google Scholar 

  54. Miyamoto, L. Molecular pathogenesis of familial Wolff–Parkinson–White Syndrome. J. Med. Invest. 65, 1–8 (2018).

    Article  PubMed  Google Scholar 

  55. Li, J., Miller, E. J., Ninomiya-Tsuji, J., Russell, R. R. & Young, L. H. AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Circ. Res. 97, 872–879 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Matesanz, N. et al. MKK6 controls T3-mediated browning of white adipose tissue. Nat. Commun. 8, 856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wickenden, A. D. et al. The role of action potential prolongation and altered intracellular calcium handling in the pathogenesis of heart failure. Cardiovasc. Res. 37, 312–323 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Gillet, L. et al. Cardiac-specific ablation of synapse-associated protein SAP97 in mice decreases potassium currents but not sodium current. Heart Rhythm 12, 181–192 (2015).

    Article  PubMed  Google Scholar 

  60. Tinaquero, D. et al. The p.P888L SAP97 polymorphism increases the transient outward current (Ito,f) and abbreviates the action potential duration and the QT interval. Sci. Rep. 10, 10707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Musa, H. et al. Abnormal myocardial expression of SAP97 is associated with arrhythmogenic risk. Am. J. Physiol. Heart Circ. Physiol. 318, H1357–H1370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koura, T. et al. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping. Circulation 105, 2092–2098 (2002).

    Article  PubMed  Google Scholar 

  63. Yan, J. et al. The stress kinase JNK regulates gap junction Cx43 gene expression and promotes atrial fibrillation in the aged heart. J. Mol. Cell. Cardiol. 114, 105–115 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Brancho, D. et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17, 1969–1978 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hauswirth, W. W., Lewin, A. S., Zolotukhin, S. & Muzyczka, N. Production and purification of recombinant adeno-associated virus. Methods Enzymol. 316, 743–761 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Rivera-Torres, J. et al. Cardiac electrical defects in progeroid mice and Hutchinson–Gilford progeria syndrome patients with nuclear lamina alterations. Proc. Natl Acad. Sci. USA 113, E7250–E7259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mitchell, G. F., Jeron, A. & Koren, G. Measurement of heart rate and Q-T interval in the conscious mouse. Am. J. Physiol. 274, H747–H751 (1998).

    CAS  PubMed  Google Scholar 

  70. Cerrone, M. et al. Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 101, 1039–1048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Noujaim, S. F. et al. Up-regulation of the inward rectifier K+ current (IK1) in the mouse heart accelerates and stabilizes rotors. J. Physiol. 578, 315–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Li, N. & Wehrens, X. H. T. Programmed electrical stimulation in mice. J. Vis. Exp.1730 (2010).

  73. Samie, F. H. et al. Rectification of the background potassium current. Circ. Res. 89, 1216–1223 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Zaitsev, A. V., Berenfeld, O., Mironov, S. F., Jalife, J. & Pertsov, A. M. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ. Res. 86, 408–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Muñoz, V. et al. Adenoviral expression of IKs contributes to wavebreak and fibrillatory conduction in neonatal rat ventricular cardiomyocyte monolayers. Circ. Res. 101, 475–483 (2007).

    Article  PubMed  Google Scholar 

  76. Cardona, M. et al. Executioner caspase-3 and 7 deficiency reduces myocyte number in the developing mouse heart. PLoS ONE 10, e0131411 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martínez-Bartolomé, S. et al. Properties of average score distributions of SEQUEST: the probability ratio method. Mol. Cell. Proteomics 7, 1135–1145 (2008).

    Article  PubMed  Google Scholar 

  78. Navarro, P. & Vázquez, J. A refined method to calculate false discovery rates for peptide identification using decoy databases. J. Proteome Res. 8, 1792–1796 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Bonzon-Kulichenko, E., Garcia-Marques, F., Trevisan-Herraz, M. & Vázquez, J. Revisiting peptide identification by high-accuracy mass spectrometry: problems associated with the use of narrow mass precursor windows. J. Proteome Res. 14, 700–710 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Rodríguez, J. M. et al. iSanXoT: a standalone application for the integrative analysis of mass spectrometry-based quantitative proteomics data. Preprint at bioRxiv https://doi.org/10.1101/2023.08.25.554773 (2023).

  81. Trevisan-Herraz, M. et al. SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments. Bioinformatics 35, 1594–1596 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Navarro, P. et al. General statistical framework for quantitative proteomics by stable isotope labeling. J. Proteome Res. 13, 1234–1247 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. García-Marqués, F. et al. A novel systems-biology algorithm for the analysis of coordinated protein responses using quantitative proteomics. Mol. Cell. Proteomics 15, 1740–1760 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Doncheva, N. T., Morris, J. H., Gorodkin, J. & Jensen, L. J. Cytoscape StringApp: network analysis and visualization of proteomics data. J. Proteome Res. 18, 623–632 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Legeay, M., Doncheva, N. T., Morris, J. H. & Jensen, L. J. Visualize omics data on networks with Omics Visualizer, a Cytoscape app. F1000Res. 9, 157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge L. Sen-Martín, J. Alegre-Cebollada (CNIC, Madrid) and L. Carrier (University Medical Center Hamburg-Eppendorf and DZHK, Hamburg) for the cMyBP3-C KO cardiac tissue; D. Roiz-Valle and C. López-Otín (IUOPA; Universidad de Oviedo, Oviedo) for the LmnaG609G/G609G cardiac tissue; and R. J. Davis for the MKK6 KO mice. We thank G. Giovinazzo and the CNIC Pluripotent Cell Technology Unit (CNIC, Madrid) for the hiPSCs. We thank S. Bartlett and F. Chanut (CNIC, Madrid) for English editing, and R. R. Mondragon (University of Michigan, Ann Arbor) for technical support. We are grateful to R. J. Davis (University of Massachusetts Chan Medical School, Worcester), A. Padmanabhan (University of California, San Francisco) and M. Costa and C. López-Otín (IUOPA; Universidad de Oviedo, Oviedo) for critical reading of the manuscript. We thank the staff at the CNIC Genomics and Bioinformatics Units for technical support and help with data analysis and A. C. Silva for help with figure editing and design. This work was funded by a CNIC Intramural Project Severo Ochoa (Expediente 12-2016 IGP) to G.S. and J.J. G.S. is supported by the following projects: PMP21/00057 IMPACT-2021, funded by the Instituto de Salud Carlos III (ISCIII), and PDC2021-121147-I00 and PID2019-104399RB-I00, funded by MCIN/AEI/10.13039/501100011033—all funded by the European Union (FEDER/FSE); ‘Una manera de hacer Europa’/‘El FSE invierte en tu futuro’/Next Generation EU and co-funded by the European Union/Plan de Recuperación, Transformación y Resiliencia (PRTR). R.R.B. is a fellow of the FPU Program (FPU17/03847). B.G.T. was a fellow of the FPI Severo Ochoa CNIC Program (SVP‐2013‐067639) and an American Heart Association Postdoctoral Fellow (18POST34080175). The following grants provided additional funding: Instituto de Salud Carlos III, PDC2021-121147-I00 Convocatoria: Proyectos Prueba de Concepto 2021 Ministerio de Ciencia e Innovación and PID2022-138525OB-I00 Ministerio de Ciencia e Innovación; US National Heart, Lung, and Blood Institute (R01 grant HL122352); Fondos FEDER, Madrid, Spain, and Fundación Bancaria ‘La Caixa (project HR19/52160013) to J.J.; American Heart Association Postdoctoral Fellowship 14POST17820005 to D.P.B.; and MICINN PGC2018-097019-B-I00, ISCIII-SGEFI/ERDF (PRB3-IPT17/0019, ProteoRed), the Fundació Marató TV3 (grant 122/C/2015) and ‘la Caixa’ Banking Foundation (project code HR17-00247) to J.V. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S, funded by MICIN/AEI/10.13039/501100011033).

Author information

Authors and Affiliations

Authors

Contributions

G.S. conceived this project. G.S. and J.J. supervised this project. R.R.-B. performed the primary experiments, acquired and analyzed the data and prepared figures. G.S., J.J. and R.R.-B. designed the study, developed the hypothesis and wrote the paper, with input from all authors. J.A.L. and J.V. performed the phosphoproteomics analysis. R.R.-B. performed the bioinformatic analysis. D.P.-B., A.A., F.M.C.U., R.R.-M, G.G.-S. and E.N.J.-V. performed cardiomyocyte isolation, patch-clamp experiments, optical mapping and in vivo intracardiac catheter burst pacing. A.M., B.G,-T., M.L., M.E.R. and L.L.-V. help to perform some of the experiments and acquired data. D.F.-R. analyzed the ECG recordings and critically revised the paper. J.J. and G.S. led and funded the project.

Corresponding authors

Correspondence to José Jalife or Guadalupe Sabio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Xander Wehrens and the other, anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editor: Elvira Forte, in collaboration with the Nature Cardiovascular Research team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 p38γ/δ have increased phosphorylation levels in hearts from old female WT mice.

Immunoblot analysis of the phosphorylation and protein levels of p38γ/δ in heart lysates from 2-month-old (n = 5) and 24-month-old (n = 7) female mice. Two-sided unpaired Stundent’s t-test. Data are expressed as mean ± SEM.

Source data

Extended Data Fig. 2 Cardiac arrhythmia phosphoproteome network in cTnT-p38γ*/δ* hearts.

a, Phosphorylation levels of p38γ/δ assessed by immunoblot in heart lysates from 24-month-old WT (n = 3) and cTnT-p38γ*/δ* (n = 3) mice. Two-sided unpaired Student’s t-test. b, Percentage of atrial fibrillation (AF) inducibility by S1-S2 protocol 1 in the absence (basal) and presence (ISO) of isoproterenol (i.p. 5 mg/kg) in 2-month-old cTnT-GFP (n = 5) and cTnT-p38γ*/δ* (n = 5) male mice. Each dot shows the percentage of AF induced in each mouse by the S1-S2 protocol 1. 2-way ANOVA followed by Sidak’s post-test. c, Percentage of VT/VF inducibility by S1-S2 protocol 1 in cTnT-GFP (n = 9), cTnT-p38γ* (n = 9), cTnT-p38δ* (n = 9) and cTnT-p38γ*/δ* (n = 8) mice in the absence (basal) and presence (ISO) of isoproterenol (i.p. 5mg/kg). Each dot shows the percentage of VT/VF induced in each mouse by the S1-S2 protocol 1. 2-way ANOVA followed by Tukey’s post-test. Data are expressed as mean ± SEM. d, Clinical Pathology Enrichment (Tox Functions) of the differentially hyperphosphorylated proteins (z-value difference>0; limma two-sided t-test p-value<0.05) from cTnT-p38γ*/δ* hearts non-corrected phosphoproteome compared to controls, as determined by Ingenuity Pathway Analysis. The vertical dashed line indicates the threshold of -Log10 (Two-sided Fisher’s exact test p-value) =1.3. e, Interaction network of DPhos proteins involved in the category ‘Cardiac Arrhythmia’ shown in (d), based on STRING database, and visualized in Cytoscape. The node colors indicate the differential abundance (inner circle) and phosphorylation state (outer circle) of the proteins in cTnT-p38γ*/δ* vs cTnT-GFP hearts. Small numbers pointing to segments of the outer circles indicate the position of the phosphosite in the sequence of the protein. The edge colors indicate the STRING interaction score between proteins. Only significant (z-value difference > 0; limma two-sided t-test p-value < 0.05) phosphopeptides are indicated. Proteins are defined by their gene name for simplicity. f, Chord diagram of the phosphoproteins found in the category ‘Cardiac Arrhythmia’shown in (d), and the 5 most significant pathologies in this category to which the phosphoproteins are assigned. Proteins are identified by their gene name for simplicity. Data are expressed as mean ± SEM.

Source data

Extended Data Fig. 3 p38γ/δ activity is related to phosphorylation of RyR2 at p-Ser p38 motif.

a, Representative blot of two independent in vitro phosphorylation kinase assays of RyR2 isolated from mice hearts on P-Ser p38 motif by active-recombinant p38α, p38β, p38γ, p38δ, and p38γ and p38δ together. b, Immunoblot analysis of RyR2 phosphorylation at P-Ser p38 motif in heart lysates from 2-month-old (n=4) and 24-month-old (n=3) WT mice. Two-sided unpaired Student’s t-test. Data are expressed as mean ± SEM.

Source data

Extended Data Fig. 4 p38γ/δ activation due to MKK6 deficiency promotes atrial fibrillation and also ventricular arrhythmias independently of the sex.

a, Percentage of atrial fibrillation (AF) inducibility by S1-S2 protocol 1 in the absence (basal) and presence (ISO) of isoproterenol (i.p. 5 mg/kg) in 5-month-old WT (n = 5) and MKK6 KO (n = 6) male mice. b, Percentage of VT/VF inducibility by S1-S2 protocol 1 in WT (n = 4) and MKK6 KO (n = 3) female mice in the absence (basal) and presence (ISO) of isoproterenol (i.p. 5mg/kg). Each dot shows the percentage of AF (a) or VT/VF (b) induced in each mouse by the S1-S2 protocol 1. 2-way ANOVA followed by Sidak’s post-test. Dara are expressed as mean ± SEM.

Extended Data Fig. 5 ICaL, INa and IK1 in 2-month-old WT and MKK6 KO cardiomyocytes.

a, Representative ICaL traces (left) and ICaL I/V relationship (right) from 2-month-old WT (n = 21) and MKK6 KO (n = 22) cardiomyocytes. Mean peak current densities at -0 mV were -9±0.5 (WT) versus-8±0.6 (MKK6 KO) pA/pF. 2-way ANOVA followed by Sidak’s post-test. Data were collected from 3 independent cardiomyocyte isolation for each condition. b, Representative sodium current traces (left) and INa I/V relationship (right) in WT (n = 22) and MKK6 KO (n = 28) cardiomyocytes. INa densities at -30 mV were similar in both groups (-31±2 pA/pF in WT vs -33±2 pA/pF in MKK6 KO cardiomyocytes). 2-way ANOVA followed by Sidak’s post-test. Data were collected from 5 independent cardiomyocyte isolation for each condition. c, Representative IK1 current traces (left) and IK1 I/V relationship (right) from WT (n = 10) and MKK6 KO (n = 9) cardiomyocytes. Mean peak current densities at -120 mV were -14±1.1 (WT) versus -16±1.1 (MKK6 KO) pA/pF. 2-way ANOVA followed by Sidak’s post-test. Data were collected from 3 independent cardiomyocyte isolation for each condition. d, Resting membrane potential, action potential amplitude, overshoot, and maximum rate of action potential depolarization (dV/dtMax) in WT (n = 26) and MKK6 KO (n = 22) cardiomyocytes. Two-sided unpaired Student’s t-test or Mann-Whitney U test. Data were collected from 4 independent cardiomyocyte isolation for each condition. Data are expressed as mean ± SEM.

Extended Data Fig. 6 Stress-induced arrhythmia burden in 9–10-month-old WT and p38γ KO mice.

a, Percentage of VT/VF inducibility by S1-S2 protocol 1 in 9–10-month-old WT (n = 8) and p38γ KO (n = 5) female mice in the absence (basal) and presence (ISO) of isoproterenol (i.p. 5 mg/kg). Each dot shows the percentage of VT/VF induced in each mouse by the S1-S2 protocol. 2-way ANOVA followed by Tukey’s post test. b, VT/VF duration in WT (n = 7 VT/VF) and p38γ KO (n = 11 VT/VF) female mice in basal condition. Each dot represents the duration of each induced arrhythmia. Two-sided unpaired Student’s t-test. Data are expressed as mean ±SEM.

Supplementary information

Reporting Summary

Supplementary Table 1

Clinical pathologies (Tox Functions) identified in the IPA of differentially hyperphosphorylated proteins (DPhos; Z value difference > 0, two-sided limma t-test P < 0.05) from the non-corrected phosphoproteomics analysis of hearts from 9-week-old WT cTnT-GFP and cTnT-p38γ*/δ* mice. The table includes the P value (two-sided Fisher’s exact test) and the proteins (identified by their gene name) for each category.

Supplementary Table 2

UniProt identifiers, gene names, phosphorylation Z value difference (cTnT-p38γ*/δ* versus cTnT-GFP), two-sided limma t-test P values, phosphopeptide sequences and phosphosites of the proteins belonging to the ‘cardiac arrhythmia’ Tox Function from IPA of the non-corrected phosphoproteomics analysis of hearts from 9-week-old WT cTnT-GFP and cTnT-p38γ*/δ* mice.

Supplementary Table 3

Diseases and functions annotations corresponding to the ‘cardiac arrhythmia’ category from IPA of differentially hyperphosphorylated proteins (DPhos; Z value difference > 0, two-sided limma t-test P < 0.05) of hearts from 9-week-old WT cTnT-GFP and cTnT-p38γ*/δ* mice non-corrected phosphoproteomics analysis. The table includes the disease name, P values (two-sided Fisher’s exact test) for each pathology and corresponding proteins (identified by their gene name).

Supplementary Table 4

Mass spectrometry non-corrected phosphoproteomics and proteomics data of hearts lysates from 2-month-old WT mice infected with adeno-associated viruses with cardiac troponin T promoter (AAV-cTnT) driving expression of either constitutively active p38γ/δ kinases (cTnT-p38γ*/δ*, n = 3) or GFP as a control (cTnT-GFP, n = 4).

Supplementary Table 5

Clinical pathologies (Tox Functions) identified in the IPA of differentially hyperphosphorylated proteins (DPhos; Z value difference > 0, two-sided limma t-test P < 0.05) from the corrected phosphoproteomics analysis of hearts from 9-week-old WT cTnT-GFP and cTnT-p38γ*/δ* mice. The table includes the P value (two-sided Fisher’s exact test) and the proteins (identified by their gene name) for each category.

Supplementary Table 6

UniProt identifiers, gene names, phosphorylation Z value difference (cTnT-p38γ*/δ* versus cTnT-GFP), two-sided limma t-test P values, phosphopeptide sequences and phosphosites of the proteins belonging to the ‘cardiac arrhythmia’ Tox Function from IPA of the corrected phosphoproteomics analysis of hearts from 9-week-old WT cTnT-GFP and cTnT-p38γ*/δ* mice.

Supplementary Table 7

Disease and function annotations corresponding to the ‘cardiac arrhythmia’ category from IPA of differentially hyperphosphorylated proteins (DPhos; Z value difference > 0, two-sided limma t-test P < 0.05) of hearts from 9-week-old WT cTnT-GFP and cTnT-p38γ*/δ* mice corrected phosphoproteomics analysis. The table includes the disease name, P values (two-sided Fisher’s exact test) for each pathology and corresponding proteins (identified by their gene name).

Supplementary Table 8

Mass spectrometry corrected phosphoproteomics (phosphorylated peptides abundance corrected by protein expression changes) and proteomics data of hearts lysates from 2-month-old WT mice infected with adeno-associated viruses with cardiac troponin T promoter (AAV-cTnT) driving expression of either constitutively active p38γ/δ kinases (cTnT-p38γ*/δ*, n = 3) or GFP as a control (cTnT-GFP, n = 4).

Supplementary Video 1

Optical mapping phase movies from the surface of the epicardial free wall of the ventricles of each MKK6 KO heart that developed high-frequency rotational activity. Patterns of activation show propagation waves compatible with fibrillatory conduction. Singularity points are also present in correlation with wave breaks in the fibrillatory conduction region. The color bar indicates the phase in the excitation–recovery cycle. Each video corresponds to a different MKK6 KO animal.

Source data

Source Data Fig. 1

Unprocessed, uncropped western blots for Fig. 1.

Source Data Fig. 3

Unprocessed, uncropped western blots for Fig. 3.

Source Data Fig. 4

Unprocessed, uncropped western blots for Fig. 4.

Source Data Fig. 5

Unprocessed, uncropped western blots for Fig. 5.

Source Data Fig. 6

Unprocessed, uncropped western blots for Fig. 6.

Source Data Fig. 7

Unprocessed, uncropped western blots for Fig. 7.

Source Data Extended Data Fig./Table 1

Unprocessed, uncropped western blots for Extended Data Fig. 1.

Source Data Extended Data Fig./Table 2.

Unprocessed, uncropped western blots for Extended Data Fig. 2.

Source Data Extended Data Fig./Table 3

Unprocessed, uncropped western blots for Extended Data Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Becerra, R., Cruz, F.M., Mora, A. et al. p38γ/δ activation alters cardiac electrical activity and predisposes to ventricular arrhythmia. Nat Cardiovasc Res 2, 1204–1220 (2023). https://doi.org/10.1038/s44161-023-00368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00368-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing