Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human circulating CD24hi marginal zone B cells produce IgM targeting atherogenic antigens and confer protection from vascular disease

An Author Correction to this article was published on 24 November 2023

This article has been updated

Abstract

IgMs that inactivate oxidation-specific epitopes (IgMOSE), which are secondary products of lipid peroxidization, protect against inflammatory diseases, including diet-induced atherosclerosis. However, the human B cell subtype that produces IgMOSE remains unknown. In this study, we used single-cell mass cytometry and adoptive transfer of B cell subtypes to NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice to identify B27+IgM+CD24hi cells as the major producers of IgMOSE in humans. Notably, these cells have characteristics of human circulatory marginal zone B (MZB) cells, which are known to be atheoroprotective IgM producers in mice. CD24 antibody treatment to reduce MZB cells and IgM in a hyperlipidemic humanized mouse model provides the evidence that MZB cells protect against vascular inflammation. Consistent with these findings, the frequency of B27+IgM+CD24hi cells (MZB) in patients inversely correlates with coronary artery disease severity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Humans with high levels of IgM specific to MDA-LDL have a greater frequency of CD27+IgM+ B cells (B27+IgM+).
Fig. 2: CD24 expression on B27+IgM+ cells marks a subtype with greater total and antigen-induced MDA-LDL-specific IgM.
Fig. 3: B27+IgM+CD24hi cells have characteristics of activated MZB cells.
Fig. 4: MZB-like B cells are more activating and bound to MDA compared to B27+IgM+CD24lo/−.
Fig. 5: CD24 knockdown reduces MZB numbers and IgM plasma levels.
Fig. 6: Reduction of B27+IgM+CD24hi (MZB) cells through using CD24mAb increases level of vascular inflammation.
Fig. 7: Increase in frequency of B27+IgM+CD24hi (MZB) cells is associated with low CAD severity in two separate human cohorts.

Similar content being viewed by others

Data availability

The CyTOF raw data and RNA sequencing raw data are available at https://zenodo.org/record/8318928. Human genome assembly GRCh38, used to align RNA sequencing data, is available at https://genome.ucsc.edu/cgi-bin/hgGateway.

Other additional CAVA cohort surface marker data for Fig. 7c are available at the Gene Expression Omnibus under accession number GSE190570. De-identified human subjects clinical and imaging data will be released to others after the establishment of a data transfer agreement between the University of Virginia Health System and the requesting institution. The contact author of this manuscript, C.A.M., will serve as the contact for access requests and will respond to requests within 2 weeks. The shared human subjects clinical and imaging data will need to be treated confidentially and used only for research purposes.

Code availability

CyTOF data were normalized using the Nolan laboratory MATLAB normalizer version 0.3 with the code available at http://github.com/nolanlab/bead-normalization/releases. CyTOF data were also de-barcoded using the Zunder laboratory de-barcoder 24, with the code available at https://github.com/zunderlab/single-cell-debarcoder.

Change history

References

  1. Ikura, Y. et al. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression. Hepatology 43, 506–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bossola, M. et al. Oxidized low-density lipoprotein biomarkers in patients with end-stage renal failure: acute effects of hemodialysis. Blood Purif. 25, 457–465 (2008).

    Article  Google Scholar 

  3. Birukova A. A. et al. Polar head groups are important for barrier-protective effects of oxidized phospholipids on pulmonary endothelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L924–L935 (2007).

  4. Tsimikas, S. & Witztum, J. L. The role of oxidized phospholipids in mediating lipoprotein(a) atherogenicity. Curr. Opin. Lipidol. 19, 369–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Sottero, B., Rossin, D., Poli, G. & Biasi, F. Lipid oxidation products in the pathogenesis of inflammation-related gut diseases. Curr. Med. Chem. 25, 1311–1326 (2017).

    Article  Google Scholar 

  6. Fraley, A. E. et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes. Results from the MIRACL (Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering) trial. J. Am. Coll. Cardiol. 53, 2186–2196 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Feng, X. et al. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J. Lipid Res. 48, 794–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Qin, J., Goswami, R., Balabanov, R. & Dawson, G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J. Neurosci. Res. 85, 977–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ross, B. M., Mamalias, N., Moszczynska, A., Rajput, A. H. & Kish, S. J. Elevated activity of phospholipid biosynthetic enzymes in substantia nigra of patients with Parkinson’s disease. Neuroscience 102, 899–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ravandi, A. et al. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk study. J. Lipid Res. 52, 1829–1836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsimikas, S. et al. Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events. J. Am. Coll. Cardiol. 60, 2218–2229 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Tsimikas, S. et al. Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J. Lipid Res. 48, 425–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Srikakulapu, P. et al. Perivascular adipose tissue harbors atheroprotective IgM-producing B cells. Front. Physiol. 8, 719 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. van den Berg, V. J. et al. IgM anti-malondialdehyde low density lipoprotein antibody levels indicate coronary heart disease and necrotic core characteristics in the Nordic Diltiazem (NORDIL) study and the Integrated Imaging and Biomarker Study 3 (IBIS-3). EBioMedicine 36, 63–72 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rosenfeld, M. E., Palinski, W., Ylä-Herttuaia, S., Butler, S. & Witztum, J. L. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arterioscler. Thromb. Vasc. Biol. 10, 336–349 (1990).

    CAS  Google Scholar 

  17. Senders, M. L. et al. PET/MR imaging of malondialdehyde-acetaldehyde epitopes with a human antibody detects clinically relevant atherothrombosis. J. Am. Coll. Cardiol. 71, 321–335 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenfeld, S. M. et al. B-1b cells secrete atheroprotective IgM and attenuate atherosclerosis. Circ. Res. 117, e28–e39 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Upadhye, A. et al. Diversification and CXCR4-dependent establishment of the bone marrow B-1a cell pool governs atheroprotective IgM production linked to human coronary atherosclerosis. Circ. Res. 125, e55–e70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Döring, Y. et al. B-cell-specific CXCR4 protects against atherosclerosis development and increases plasma IgM levels. Circ. Res. 126, 787–788 (2020).

    Article  PubMed  Google Scholar 

  21. Doran, A. C. et al. B-cell aortic homing and atheroprotection depend on Id3. Circ. Res. 110, e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Amu, S., Tarkowski, A., Dörner, T., Bokarewa, M. & Brisslert, M. The human immunomodulatory CD25+ B cell population belongs to the memory B cell pool. Scand. J. Immunol. 66, 77–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Brisslert, M. et al. Phenotypic and functional characterization of human CD25+ B cells. Immunology 117, 548–557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaminski, D. A., Wei, C., Qian, Y., Rosenberg, A. F. & Sanz, I. Advances in human B cell phenotypic profiling. Front. Immunol. 3, 302 (2012).

  25. Weill, J. C. & Reynaud, C. A. IgM memory B cells: specific effectors of innate-like and adaptive responses. Curr. Opin. Immunol. 63, 1–6 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Appelgren, D., Eriksson, P., Ernerudh, J. & Segelmark, M. Marginal-zone B-cells are main producers of IgM in humans, and are reduced in patients with autoimmune vasculitis. Front. Immunol. 9, 2242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tull, T. J. et al. Human marginal zone B cell development from early T2 progenitors. J. Exp. Med. 218, e20202001 (2021).

  28. Siu, J. H. Y. et al. Two subsets of human marginal zone B cells resolved by global analysis of lymphoid tissues and blood. Sci. Immunol. 7, eabm9060 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Glass, D. R. et al. An integrated multi-omic single-cell atlas of human B cell identity. Immunity 53, 217–232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weller, S. et al. Human blood IgM ‘memory’ B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Proto, J. D. et al. Hypercholesterolemia induces T cell expansion in humanized immune mice. J. Clin. Invest. 128, 2370–2375 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rampidis, G. P., Benetos, G., Benz, D. C., Giannopoulos, A. A. & Buechel, R. R. A guide for Gensini Score calculation. Atherosclerosis 287, 181–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9, 736–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92, 821–825 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faria-Neto, J. R. et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 189, 83–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Chou, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harmon, D. B. et al. Protective role for B-1b B cells and IgM in obesity-associated inflammation, glucose intolerance, and insulin resistance. Arterioscler. Thromb. Vasc. Biol. 36, 682–691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Masmoudi, H., Mota-Santos, T., Huetz, F., Coutinho, A. & Cazenave, P. A. All T15 Id-positive antibodies (but not the majority of VHT15+ antibodies) are produced by peritoneal CD5+ B lymphocytes. Int. Immunol. 2, 515–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Tsiantoulas, D., Gruber, S. & Binder, C. J. B-1 cell immunoglobulin directed against oxidation-specific epitopes. Front. Immunol. 3, 415 (2012).

    PubMed  Google Scholar 

  41. Kyaw, T. et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ. Res. 109, 830–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Shen, L. et al. B-1a lymphocytes attenuate insulin resistance. Diabetes 64, 593–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Gonen, A. et al. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine. J. Lipid Res. 55, 2137–2155 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138, 147–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Martos-Folgado, I. et al. MDA-LDL vaccination induces athero-protective germinal-center-derived antibody responses. Cell Rep. 41, 111468 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Björkbacka, H. et al. Low levels of apolipoprotein B-100 autoantibodies are associated with increased risk of coronary events. Arterioscler. Thromb. Vasc. Biol. 36, 765–771 (2016).

    Article  PubMed  Google Scholar 

  47. Kalinina, N. et al. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 24, 2320–2325 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Lorenzo, C. et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 589, 287–292 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Martin, F. & Kearney, J. F. B1 cells: similarities and differences with other B cell subsets. Curr. Opin. Immunol. 13, 195–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Berkowska, M. A. et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 118, 2150–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Mesin, L., Ersching, J. & Victora, G. D. Germinal center B cell dynamics. Immunity 45, 471–482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cerutti, A., Cols, M. & Puga, I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13, 118–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Palm, A. K. E. & Kleinau, S. Marginal zone B cells: from housekeeping function to autoimmunity? J. Autoimmun. 119, 102627 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proc. Natl Acad. Sci. USA 112, E2030–E2038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shaw, P. X., Goodyear, C. S., Chang, M. K., Witztum, J. L. & Silverman, G. J. The autoreactivity of anti-phosphorylcholine antibodies for atherosclerosis-associated neo-antigens and apoptotic cells. J. Immunol. 170, 6151–6157 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Steiniger, B., Timphus, E. M. & Barth, P. J. The splenic marginal zone in humans and rodents: an enigmatic compartment and its inhabitants. Histochem. Cell Biol. 126, 641–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Balázs, M., Martin, F., Zhou, T. & Kearney, J. F. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17, 341–352 (2002).

    Article  PubMed  Google Scholar 

  60. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Nus, M. et al. NR4A1 deletion in marginal zone B cells exacerbates atherosclerosis in mice—Brief Report. Arterioscler. Thromb. Vasc. Biol. 40, 2598–2604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yanyi, S. et al. Splenic marginal zone B lymphocytes regulate cardiac remodeling after acute myocardial infarction in mice. J. Am. Coll. Cardiol. 79, 632–647, https://doi.org/10.1016/j.jacc.2021.11.051 (2022).

    Article  CAS  Google Scholar 

  63. Jarr, K. U. et al. 18F-Fluorodeoxyglucose-positron emission tomography imaging detects response to therapeutic intervention and plaque vulnerability in a murine model of advanced atherosclerotic disease—brief report. Arterioscler. Thromb. Vasc. Biol. 40, 2821–2828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fang, X., Zheng, P., Tang, J. & Liu, Y. CD24: from A to Z. Cell. Mol. Immunol. 7, 100–103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gonen, A. et al. A monoclonal antibody to assess oxidized cholesteryl esters associated with apoAI and apoB-100 lipoproteins in human plasma1. J. Lipid Res. 60, 436–445 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).

    Article  PubMed  Google Scholar 

  67. Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vallejo, J. et al. Combined protein and transcript single-cell RNA sequencing in human peripheral blood mononuclear cells. BMC Biol. 20, 193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amir, S. et al. Peptide mimotopes of malondialdehyde epitopes for clinical applications in cardiovascular disease. J. Lipid Res. 53, 1316–1326, https://doi.org/10.1194/jlr.M025445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

Download references

Acknowledgements

We thank M. Solga and C. Chew from the University of Virginia Flow Cytometry Core for their excellent technical assistance. We thank L. Erickson (University of Virginia Carter Immunology Center) for his invaluable advice on B cell phenotypes and S. Bekiranov (University of Virginia Biochemistry and Molecular Genetics) for his insights on RNA sequencing analysis. This work was supported by National Institutes of Health grants R01HL136098 and R01-HL148109 (C.A.M.) and P01HL136275 (C.C.H., K.L., C.A.M., Y.M., A.M.T. and S.T.) and a LeDucq Foundation Transatlantic Network of Excellence grant: ‘B cells in cardiovascular disease’ (C.A.M.). T.P. is a recipient of an American Heart Association pre-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contributions to the paper as follows. Study conception and design: T.P. and C.A.M. Data collection: T.P., A.T.N., C.M., M.A.M., T.V.G., K.P., A.G. and S.P. Analysis and interpretation of results: H.Q.D., Y.G., R.G., C.D., J.V., R.S. and F.D. Samples and resources: A.M.T., B.K., S.B., S.T., Y.M., S.P., K.L., C.C.H. and C.A.M. Draft paper preparation: T.P. and C.A.M. All authors reviewed the results and approved the final version of the paper.

Corresponding author

Correspondence to Coleen A. McNamara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Dennis Wolf and the other, anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editor: Vesna Todorovic, in collaboration with the Nature Cardiovascular Research team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Unsupervised metalouvain clustering of CD19+ B cells obtained from 28 subjects with high and low plasma levels of IgM to MDA-LDL (n = 14 high IgM and n = 14 low IgM).

Clustering result indicates 11 distinct clusters with a subject from high IgM to MDA-LDL group representing a potential clonal expansion of cluster 1 (CD20+ CD25hi B cells).

Extended Data Fig. 2 Plasma level of IgMMDA-LDL strongly associates with Plasma level of IgMPC-BSA and IgMOxCE.

a, Pearson correlations between plasma IgMPC-BSA and plasma IgMMDA-LDL. b, Pearson correlations between plasma IgMOxCE and plasma IgMMDA-LDL. Error bands indicate values within 95% confidence interval. p-values were calculated with two-tailed Pearson correlations.

Extended Data Fig. 3 Unsupervised clustering of IgM producing B cells (clusters 1 and 8) obtained from 27 subjects with high and low plasma levels of IgM to MDA-LDL.

a, Representative metacluster UMAP showing 4 distinguished innate B cell subtypes by using Louvain clustering. b-c, Heatmap showing median expression of 24 surface markers from metaclustering (b) and potential phenotypes of 4 innate B cell subtypes (c). d, Representative UMAP showing CD24 expression across 4 innate B cell subtypes, e, Biaxial plots to compare frequency of each subtype as a percentage of total CD27+IgM+ B cells in subjects with high (n = 13) and low (n = 14) IgM MDA-LDL. Data were analyzed using two-sided Mann-Whitney Wilcoxon test. Values are mean ± s.d. Exact p-values were provided above each graph. Boxplots in Extended Data Fig. 3e are defined as the followings: minima = Quartile 1 – 1.5x(interquartile range), maxima = Quartile 3 + 1.5x(interquartile range), center = median, lower bound of box = Quartile 1, and upper bound of box = Quartile 3.

Extended Data Fig. 4 Pearson correlations between geometric mean (GM) of all CyTOF panel’s surface markers on B27+IgM+ and plasma IgMMDA-LDL.

Error bands indicate values within 95% confidence interval. p-values were calculated with two-tailed Pearson correlations.

Extended Data Fig. 5 Pearson correlations between geometric mean (GM) of CD24 on B27+IgM+ and plasma total IgM, IgM to OxCE, IgM to HMGB1, and IgM to ALDH4a1.

Error bands indicate values within 95% confidence interval. p-values were calculated with two-tailed Pearson correlations.

Extended Data Fig. 6 Sorting strategy for B27-, B27+IgM+CD24l°/-, and B27+IgM+CD24hi.

Human PBMCs were enriched for B cells and sorted for CD20CD27-, CD20 + CD27+IgM+CD24lo, and CD20 + CD27+IgM+CD24hi.

Extended Data Fig. 7 Pearson correlations between frequency of B27+IgM+CD24lo/- (a) and B27+IgM+CD24hi (b) and plasma IgMMDA-LDL in coronary artery disease (CAD) patients.

Error bands indicate values within 95% confidence interval. p-values were calculated with two-tailed Pearson correlations.

Extended Data Fig. 8 Confirmation of CD24 knockdown by RT-qPCR.

B27+IgM+CD24hi cells from 5 human donors were nucleo-transfected by Cas9/CD24 non-targeted or CD24 targeted trancrRNA-crRNA. Relative expression of CD24 mRNA was measured by RT-qPCR and corrected by GAPDH housekeeping gene. Data were analyzed by using two-sided Mann-Whitney Wilcoxon test. Values are mean ± s.d. Exact p-values were provided above each graph.

Supplementary information

Reporting Summary

44161_2023_356_MOESM2_ESM.xlsx

Supplementary Table 1. Differences in IgM and IgG to OSEs between high and low IgMMDA-LDL groups. Supplementary Table 2. DE genes compared between B27+IgM+CD24hi and B27+IgM+CD24lo/− cells. Supplementary Table 3. CyTOF antibodies. Supplementary Table 4. FACS sorting antibodies. Supplementary Table 5. Flow cytometry antibodies for tissue samples after humanized mice harvest.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Source Data Fig. 6

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattarabanjird, T., Nguyen, A.T., McSkimming, C. et al. Human circulating CD24hi marginal zone B cells produce IgM targeting atherogenic antigens and confer protection from vascular disease. Nat Cardiovasc Res 2, 1003–1014 (2023). https://doi.org/10.1038/s44161-023-00356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00356-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing