Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of endothelial flow sensing

Abstract

Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vessel structure determines blood flow patterns and vessel health.
Fig. 2: Endothelial mechanosensors.

Similar content being viewed by others

References

  1. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Givens, C. & Tzima, E. Endothelial mechanosignaling: does one sensor fit all? Antioxid. Redox Signal. 25, 373–388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tanaka, K., Joshi, D., Timalsina, S. & Schwartz, M. A. Early events in endothelial flow sensing. Cytoskeleton 78, 217–231 (2021).

    Article  PubMed  Google Scholar 

  4. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Dunn, J., Simmons, R., Thabet, S. & Jo, H. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int. J. Biochem. Cell Biol. 67, 167–176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moore, S. W., Roca-Cusachs, P. & Sheetz, M. P. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev. Cell 19, 194–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ernstrom, G. G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet. 36, 411–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Alphonsus, C. S. & Rodseth, R. N. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69, 777–784 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Weinbaum, S., Tarbell, J. M. & Damiano, E. R. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9, 121–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Fu, B. M. & Tarbell, J. M. Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 381–390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pahakis, M. Y., Kosky, J. R., Dull, R. O. & Tarbell, J. M. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun. 355, 228–233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tarbell, J. M., Simon, S. I. & Curry, F. R. Mechanosensing at the vascular interface. Annu. Rev. Biomed. Eng. 16, 505–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Florian, J. A. et al. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93, e136–e142 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Yen, W. et al. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo. PLoS ONE 10, e0117133 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumagai, R., Lu, X. & Kassab, G. S. Role of glycocalyx in flow-induced production of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 47, 600–607 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yao, Y., Rabodzey, A. & Dewey, C. F. Jr. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart. Circ. Physiol. 293, H1023–H1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. McDonald, K. K., Cooper, S., Danielzak, L. & Leask, R. L. Glycocalyx degradation induces a proinflammatory phenotype and increased leukocyte adhesion in cultured endothelial cells under flow. PLoS ONE 11, e0167576 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, J. et al. AMP-activated protein kinase regulates glycocalyx impairment and macrophage recruitment in response to low shear stress. FASEB J. 33, 7202–7212 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, H. et al. Hyaluronidase2 (Hyal2) modulates low shear stress-induced glycocalyx impairment via the LKB1/AMPK/NADPH oxidase-dependent pathway. J. Cell. Physiol. 233, 9701–9715 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Zeng, Y. et al. Fluid shear stress induces the clustering of heparan sulfate via mobility of glypican-1 in lipid rafts. Am. J. Physiol. Heart. Circ. Physiol. 305, H811–H820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ebong, E. E., Lopez-Quintero, S. V., Rizzo, V., Spray, D. C. & Tarbell, J. M. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1 and syndecan-1. Integr. Biol. 6, 338–347 (2014).

    Article  CAS  Google Scholar 

  24. dela Paz, N. G., Melchior, B., Shayo, F. Y. & Frangos, J. A. Heparan sulfates mediate the interaction between platelet endothelial cell adhesion molecule-1 (PECAM-1) and the Gαq/11 subunits of heterotrimeric G proteins. J. Biol. Chem. 289, 7413–7424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartosch, A. M. W. et al. Heparan sulfate proteoglycan glypican-1 and PECAM-1 cooperate in shear-induced endothelial nitric oxide production. Sci. Rep. 11, 11386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartosch, A. M. W., Mathews, R. & Tarbell, J. M. Endothelial glycocalyx-mediated nitric oxide production in response to selective AFM pulling. Biophys. J. 113, 101–108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Le, V. et al. Molecular tension in syndecan-1 is regulated by extracellular mechanical cues and fluidic shear stress. Biomaterials 275, 120947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koo, A., Dewey, C. F. Jr. & Garcia-Cardena, G. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am. J. Physiol. Cell Physiol. 304, C137–C146 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Baeyens, N. et al. Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc. Natl Acad. Sci. USA 111, 17308–17313 (2014). Demonstration of an atheroprotective role of syndecan-4 in response to LSS, both in vitro and in a mouse model of atherosclerosis, via modulation of endothelial alignment and anti-inflammatory signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, C., Baker, B. M., Chen, C. S. & Schwartz, M. A. Endothelial cell sensing of flow direction. Arter. Thromb. Vasc. Biol. 33, 2130–2136 (2013).

    Article  CAS  Google Scholar 

  31. Wang, Y. et al. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development 143, 4441–4451 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sieve, I., Munster-Kuhnel, A. K. & Hilfiker-Kleiner, D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul. Pharmacol. 100, 26–33 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, G. et al. Shear stress regulation of endothelial glycocalyx structure is determined by glucobiosynthesis. Arterioscler. Thromb. Vasc. Biol. 40, 350–364 (2020).

    Article  PubMed  Google Scholar 

  34. Wheway, G., Nazlamova, L. & Hancock, J. T. Signaling through the primary cilium. Front. Cell Dev. Biol. 6, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Yoder, B. K. et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am. J. Physiol. Renal Physiol. 282, F541–F552 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Pazour, G. J. & Rosenbaum, J. L. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol. 12, 551–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Nauli, S. M. et al. Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J. Am. Soc. Nephrol. 17, 1015–1025 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, K., Drummond, I., Ibraghimov-Beskrovnaya, O., Klinger, K. & Arnaout, M. A. Polycystin 1 is required for the structural integrity of blood vessels. Proc. Natl Acad. Sci. USA 97, 1731–1736 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, G. et al. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat. Genet. 24, 75–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Franchi, F. et al. Impaired Hedgehog-Gli1 pathway activity underlies the vascular phenotype of polycystic kidney disease. Hypertension 76, 1889–1897 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Nauli, S. M., Jin, X. & Hierck, B. P. The mechanosensory role of primary cilia in vascular hypertension. Int. J. Vasc. Med. 2011, 376281 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. MacKay, C. E. et al. A plasma membrane-localized polycystin-1/polycystin-2 complex in endothelial cells elicits vasodilation. Elife 11, e74765 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. MacKay, C. E. et al. Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure. Elife 9, e56655 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. AbouAlaiwi, W. A. et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ. Res. 104, 860–869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nauli, S. M. et al. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117, 1161–1171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Delling, M. et al. Primary cilia are not calcium-responsive mechanosensors. Nature 531, 656–660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goetz, J. G. et al. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep. 6, 799–808 (2014). Evidence that increase in flow forces leads to cilia deflection in zebrafish and that cilia, flow and PKD2 are required for angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  50. Eisa-Beygi, S. et al. Characterization of endothelial cilia distribution during cerebral-vascular development in zebrafish (Danio rerio). Arterioscler. Thromb. Vasc. Biol. 38, 2806–2818 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Van der Heiden, K. et al. Monocilia on chicken embryonic endocardium in low shear stress areas. Dev. Dyn. 235, 19–28 (2006).

    Article  PubMed  Google Scholar 

  52. Ferreira, R. R., Fukui, H., Chow, R., Vilfan, A. & Vermot, J. The cilium as a force sensor-myth versus reality. J. Cell Sci. 132, jcs213496 (2019).

    Article  Google Scholar 

  53. Vion, A. C. et al. Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J. Cell Biol. 217, 1651–1665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones, T. J. et al. Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization. J. Cell. Physiol. 227, 70–76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Van der Heiden, K. et al. Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis 196, 542–550 (2008).

    Article  PubMed  Google Scholar 

  56. Iomini, C., Tejada, K., Mo, W., Vaananen, H. & Piperno, G. Primary cilia of human endothelial cells disassemble under laminar shear stress. J. Cell Biol. 164, 811–817 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Egorova, A. D. et al. Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ. Res. 108, 1093–1101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dinsmore, C. & Reiter, J. F. Endothelial primary cilia inhibit atherosclerosis. EMBO Rep 17, 156–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Del Pozo, M. A., Lolo, F. N. & Echarri, A. Caveolae: mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr. Opin. Cell Biol. 68, 113–123 (2021).

    Article  PubMed  Google Scholar 

  60. Rizzo, V., Morton, C., DePaola, N., Schnitzer, J. E. & Davies, P. F. Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am. J. Physiol. Heart. Circ. Physiol. 285, H1720–H1729 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011). Evidence for a role of caveolae in buffering acute mechanical cell stress through caveolar flattening and disassembly, accompanied by redistribution of caveolins to the plasma membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng, J. P. et al. Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J. Cell Biol. 211, 53–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ramirez, C. M. et al. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation 140, 225–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mylvaganam, S. et al. The spectrin cytoskeleton integrates endothelial mechanoresponses. Nat. Cell Biol. 24, 1226–1238 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Rizzo, V., McIntosh, D. P., Oh, P. & Schnitzer, J. E. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J. Biol. Chem. 273, 34724–34729 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Chai, Q., Wang, X. -L., Zeldin, D. C. & Lee, H. -C. Role of caveolae in shear stress-mediated endothelium-dependent dilation in coronary arteries. Cardiovascular Res. 100, 151–159 (2013).

    Article  CAS  Google Scholar 

  67. Yamamoto, K. & Ando, J. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases. J. Cell Sci. 126, 1227–1234 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Yamamoto, K., Imamura, H. & Ando, J. Shear stress augments mitochondrial ATP generation that triggers ATP release and Ca2+ signaling in vascular endothelial cells. Am. J. Physiol. Heart. Circ. Physiol. 315, H1477–H1485 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yamamoto, K. et al. Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J. Cell Sci. 124, 3477–3483 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Yu, J. et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 116, 1284–1291 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frank, P. G. et al. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 98–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Fernandez-Hernando, C. et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 10, 48–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, X. et al. Cav-1 (caveolin-1) deficiency increases autophagy in the endothelium and attenuates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 40, 1510–1522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davies, P. F., Mundel, T. & Barbee, K. A. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J. Biomech. 28, 1553–1560 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Fancher, I. S. & Levitan, I. Endothelial inwardly-rectifying K+ channels as a key component of shear stress-induced mechanotransduction. Curr. Top. Membr. 85, 59–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Gerhold, K. A. & Schwartz, M. A. Ion channels in endothelial responses to fluid shear stress. Physiology 31, 359–369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olesen, S. P., Claphamt, D. & Davies, P. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331, 168–170 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Ahn, S. J. et al. Inwardly rectifying K+ channels are major contributors to flow-induced vasodilatation in resistance arteries. J. Physiol. 595, 2339–2364 (2017). Demonstration of a role of Kir2.1 in endothelium-dependent flow-induced vasodilation and NO signaling in isolated human and murine resistance arteries.

    Article  CAS  PubMed  Google Scholar 

  79. Fang, Y. et al. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ. Res. 98, 1064–1071 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Fancher, I. S. et al. Hypercholesterolemia-induced loss of flow-induced vasodilation and lesion formation in apolipoprotein E-deficient mice critically depend on inwardly rectifying K+ channels. J. Am. Heart Assoc. 7, e007430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Brohawn, S. G., Campbell, E. B. & MacKinnon, R. Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516, 126–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brohawn, S. G., Su, Z. & MacKinnon, R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc. Natl Acad. Sci. USA 111, 3614–3619 (2014). Mechanical gating of TRAAK and TREK1 channels is observed in reconstituted proteoliposomes in the absence of potential tethers, demonstrating mechanical activation via transmission of tension across the lipid membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gautam, M., Shen, Y., Thirkill, T. L., Douglas, G. C. & Barakat, A. I. Flow-activated chloride channels in vascular endothelium. Shear stress sensitivity, desensitization dynamics, and physiological implications. J. Biol. Chem. 281, 36492–36500 (2006). Characterization of flow-mediated outwardly rectifying Cl currents in bovine aortic endothelial cells, which are rapidly activated at low shear stress values but are unresponsive to oscillatory flow.

    Article  CAS  PubMed  Google Scholar 

  84. Lieu, D. K., Pappone, P. A. & Barakat, A. I. Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 286, C1367–C1375 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Dutta, A. K., Woo, K., Khimji, A. K., Kresge, C. & Feranchak, A. P. Mechanosensitive Cl secretion in biliary epithelium mediated through TMEM16A. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G87–G98 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Bulley, S. et al. TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ. Res. 111, 1027–1036 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kunzelmann, K. TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca2+ and cell volume. Trends Biochem. Sci. 40, 535–543 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Du, J. et al. TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J. 28, 4677–4685 (2014). Identification of a flow-sensitive complex of TRPV4, TRPC1 and TRPP2, of which all components are required for flow-induced cation currents and Ca2+ signaling when cotransfected in HEK293 cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma, X. et al. Functional role of vanilloid transient receptor potential 4-canonical transient receptor potential 1 complex in flow-induced Ca2+ influx. Arterioscler. Thromb. Vasc. Biol. 30, 851–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Köhler, R. et al. Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arter. Thromb. Vasc. Biol. 26, 1495–1502 (2006).

    Article  Google Scholar 

  92. Hartmannsgruber, V. et al. Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS ONE 2, e827 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mendoza, S. A. et al. TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am. J. Physiol. Heart. Circ. Physiol. 298, H466–H476 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Bubolz, A. H. et al. Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca2+ entry and mitochondrial ROS signaling. Am. J. Physiol. Heart. Circ. Physiol. 302, H634–H642 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Baratchi, S., Knoerzer, M., Khoshmanesh, K., Mitchell, A. & McIntyre, P. Shear stress regulates TRPV4 channel clustering and translocation from adherens junctions to the basal membrane. Sci. Rep. 7, 15942 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Baratchi, S. et al. Shear stress mediates exocytosis of functional TRPV4 channels in endothelial cells. Cell. Mol. Life Sci. 73, 649–666 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Potla, R. et al. Molecular mapping of transmembrane mechanotransduction through the beta1 integrin–CD98hc–TRPV4 axis. J. Cell Sci. 133, jcs248823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Swain, S. M. & Liddle, R. A. Piezo1 acts upstream of TRPV4 to induce pathological changes in endothelial cells due to shear stress. J. Biol. Chem. 296, 100171 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Coste, B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483, 176–181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ranade, S. S. et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc. Natl Acad. Sci. USA 111, 10347–10352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Albarran-Juarez, J. et al. Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. J. Exp. Med 215, 2655–2672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, S. et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin. Invest. 126, 4527–4536 (2016). Demonstration that PIEZO1 triggers flow-induced ATP release through pannexin channels, subsequent Gq/G11-coupled P2Y2 receptor signaling and activation of AKT and eNOS, with complementary in vivo data illustrating a critical role for PIEZO1 in blood pressure regulation in the mouse.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279–282 (2014). Evidence for PIEZO1 as a sensor of shear stress and regulator of vascular structure, with reconstitution of PIEZO1 conferring sensitivity to shear stress in HEK293 cells.

  106. Lukacs, V. et al. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat. Commun. 6, 8329 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Dubin, A. E. et al. Endogenous Piezo1 can confound mechanically activated channel identification and characterization. Neuron 94, 266–270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, J. et al. GPR68 senses flow and is essential for vascular physiology. Cell 173, 762–775 (2018). Identification of GPR68 as a shear stress sensor responsible for flow-mediated calcium transients in response to laminar shear stress, with a role in acute flow-mediated vasodilation and chronic flow-mediated outward remodelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, S. et al. P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction. J. Clin. Invest. 125, 3077–3086 (2015).

  110. Iring, A. et al. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J. Clin. Invest. 129, 2775–2791 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chuntharpursat-Bon, E. et al. Cell adhesion molecule interaction with Piezo1 channels is a mechanism for subcellular regulation of mechanical sensitivity. Preprint at bioRxiv https://doi.org/10.1101/602532 (2019).

  112. Pan, X. et al. Inhibition of chemically and mechanically activated Piezo1 channels as a mechanism for ameliorating atherosclerosis with salvianolic acid B. Br. J. Pharmacol. 179, 3778–3814 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, S. et al. Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis. Blood 140, 171–183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. John, L. et al. The Piezo1 cation channel mediates uterine artery shear stress mechanotransduction and vasodilation during rat pregnancy. Am. J. Physiol. Heart. Circ. Physiol. 315, H1019–H1026 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Morley, L. C. et al. Piezo1 channels are mechanosensors in human fetoplacental endothelial cells. Mol. Hum. Reprod. 24, 510–520 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bartoli, F. et al. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J. Clin. Invest. 132, e141775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yamamoto, K. et al. Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am. J. Physiol. Heart. Circ. Physiol. 285, H793–H803 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kessler, S., Clauss, W. G. & Fronius, M. Laminar shear stress modulates the activity of heterologously expressed P2X4 receptors. Biochim. Biophys. Acta 1808, 2488–2495 (2011).

  119. Yamamoto, K., Korenaga, R., Kamiya, A. & Ando, J. Fluid shear stress activates Ca2+ influx into human endothelial cells via P2X4 purinoceptors. Circ. Res. 87, 385–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Darby, W. G. et al. Shear stress sensitizes TRPV4 in endothelium-dependent vasodilatation. Pharmacol. Res. 133, 152–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Lai, A. et al. Analyzing the shear-induced sensitization of mechanosensitive ion channel Piezo-1 in human aortic endothelial cells. J. Cell. Physiol. 236, 2976–2987 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Hope, J. M. et al. Fluid shear stress enhances T cell activation through Piezo1. BMC Biol. 20, 61 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dejana, E. Endothelial cell–cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5, 261–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005). Identification of a mechanosensory complex of PECAM-1, VE-cadherin and VEGFR2, which confers shear stress sensitivity in heterologous cells and is essential for early pro-atherosclerotic signaling events in response to oscillatory shear stress.

    Article  CAS  PubMed  Google Scholar 

  125. Osawa, M., Masuda, M., Kusano, K. -I. & Fujiwara, K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J. Cell Biol. 158, 773–785 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Collins, C. et al. Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway. Curr. Biol. 22, 2087–2094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Collins, C. et al. Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells. Nat. Commun. 5, 3984 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Barry, A. K., Wang, N. & Leckband, D. E. Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J. Cell Sci. 128, 1341–1351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Conway, D. E. et al. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23, 1024–1030 (2013). Demonstration that application of fluid shear stress increases mechanical tension on PECAM-1 via connections with vimentin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Coon, B. G. et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J. Cell Biol. 208, 975–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, Y. et al. A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress. J. Cell Biol. 201, 863–873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Conway, D. E. et al. VE-cadherin phosphorylation regulates endothelial fluid shear stress responses through the polarity protein LGN. Curr. Biol. 27, 2219–2225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Baeyens, N. et al. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. Life 4, e04645 (2015).

    Google Scholar 

  135. Osawa, M., Masuda, M., Harada, N., Lopes, R. B. & Fujiwara, K. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule- 1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells. Eur. J. Cell Biol. 72, 229–237 (1997).

    CAS  PubMed  Google Scholar 

  136. Chiu, Y. -J., McBeath, E. & Fujiwara, K. Mechanotransduction in an extracted cell model: Fyn drives stretch- and flow-elicited PECAM-1 phosphorylation. J. Cell Biol. 182, 753–763 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Feaver, R. E., Gelfand, B. D. & Blackman, B. R. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat. Commun. 4, 1525 (2013).

    Article  PubMed  Google Scholar 

  138. Fleming, I., Fisslthaler, B., Dixit, M. & Busse, R. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J. Cell Sci. 118, 4103–4111 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Lakshmikanthan, S. et al. Rap1 promotes endothelial mechanosensing complex formation, NO release and normal endothelial function. EMBO Rep. 16, 628–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kooistra, M. R., Corada, M., Dejana, E. & Bos, J. L. Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett. 579, 4966–4972 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Sakurai, A. et al. MAGI-1 is required for Rap1 activation upon cell–cell contact and for enhancement of vascular endothelial cadherin-mediated cell adhesion. Mol. Biol. Cell 17, 966–976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ke, Y. et al. Mechanosensitive Rap1 activation promotes barrier function of lung vascular endothelium under cyclic stretch. Mol. Biol. Cell 30, 959–974 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, Z. & Tzima, E. PECAM-1 is necessary for flow-induced vascular remodeling. Arter. Thromb. Vasc. Biol. 29, 1067–1073 (2009).

    Article  CAS  Google Scholar 

  144. Chen, Z., Rubin, J. & Tzima, E. Role of PECAM-1 in arteriogenesis and specification of preexisting collaterals. Circ. Res. 107, 1355–1363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bagi, Z. et al. PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress. Arter. Thromb. Vasc. Biol. 25, 1590–1595 (2005).

    Article  CAS  Google Scholar 

  146. Liu, Y. et al. Peroxynitrite reduces the endothelium-derived hyperpolarizing factor component of coronary flow-mediated dilation in PECAM-1-knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 90, R57–R65 (2006).

    Article  Google Scholar 

  147. McCormick, M. E. et al. Platelet-endothelial cell adhesion molecule-1 regulates endothelial NO synthase activity and localization through signal transducers and activators of transcription 3-dependent NOSTRIN expression. Arter. Thromb. Vasc. Biol. 31, 643–649 (2011).

    Article  CAS  Google Scholar 

  148. Goel, R. et al. Site-specific effects of PECAM-1 on atherosclerosis in LDL receptor-deficient mice. Arter. Thromb. Vasc. Biol. 28, 1996–2002 (2008).

    Article  CAS  Google Scholar 

  149. Harry, B. L. et al. Endothelial cell PECAM-1 promotes atherosclerotic lesions in areas of disturbed flow in ApoE-deficient mice. Arter. Thromb. Vasc. Biol. 28, 2003–2008 (2008).

    Article  CAS  Google Scholar 

  150. Harrison, M. et al. The role of platelet-endothelial cell adhesion molecule-1 in atheroma formation varies depending on the site-specific hemodynamic environment. Arter. Thromb. Vasc. Biol. 33, 694–701 (2013).

    Article  CAS  Google Scholar 

  151. Stevens, H. Y. et al. PECAM-1 is a critical mediator of atherosclerosis. Disease Model. Mech. 1, 175–181 (2008).

    Article  CAS  Google Scholar 

  152. Liu, Y., Sweet, D. T., Irani-Tehrani, M., Maeda, N. & Tzima, E. Shc coordinates signals from intercellular junctions and integrins to regulate flow-induced inflammation. J. Cell Biol. 182, 185–196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jalali, S. et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix ligands. Proc. Natl Acad. Sci. USA 98, 1042–1046 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mehta, V. et al. Mechanical forces regulate endothelial-to-mesenchymal transition and atherosclerosis via an Alk5–Shc mechanotransduction pathway. Sci. Adv 7, eabg5060 (2021). Identification of mechanoreceptor ALK5 and a unique downstream mechanosensitive signaling pathway leading to endothelial-to-mesenchymal transition, dependent on ALK5 association with adaptor protein SHC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sweet, D. T. et al. Endothelial Shc regulates arteriogenesis through dual control of arterial specification and inflammation via the notch and nuclear factor-kappa-light-chain-enhancer of activated B cell pathways. Circ. Res. 113, 32–39 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jukic, I. et al. Angiotensin II type 1 receptor is involved in flow-induced vasomotor responses of isolated middle cerebral arteries: role of oxidative stress. Am. J. Physiol. Heart. Circ. Physiol. 320, H1609–H1624 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Erdogmus, S. et al. Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nat. Commun. 10, 5784 (2019). Identification of the C-terminal helix 8 structural motif as the essential mechanosensitive domain in GPCRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zou, Y. et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat. Cell Biol. 6, 499–506 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Chachisvilis, M., Zhang, Y. -L. & Frangos, J. A. G-protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl Acad. Sci. USA 103, 15463–15468 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yeh, J. C., Otte, L. A. & Frangos, J. A. Regulation of G-protein-coupled receptor activities by the platelet-endothelial cell adhesion molecule, PECAM-1. Biochemistry 47, 9029–9039 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Jung, B. et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev. Cell 23, 600–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gaengel, K. et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell 23, 587–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Strohbach, A. et al. The apelin receptor influences biomechanical and morphological properties of endothelial cells. J. Cell. Physiol. 233, 6250–6261 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Ozkan, A. D. et al. Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J. Cell Sci. 134, jcs255455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tanaka, K. et al. Latrophilins are essential for endothelial junctional fluid shear stress mechanotransduction. Preprint at bioRxiv https://doi.org/10.1101/2020.02.03.932822 (2020).

  166. Rozbesky, D. & Jones, E. Y. Cell guidance ligands, receptors and complexes—orchestrating signalling in time and space. Curr. Opin. Struct. Biol. 61, 79–85 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mehta, V. et al. The guidance receptor plexin D1 is a mechanosensor in endothelial cells. Nature 578, 290–295 (2020). Identification and structural characterisation of novel mechanosensor PLXND1, which forms a mechanosensory complex with neuropilin-1 and VEGFR2, and is critical for the endothelial response to shear stress and the regulation of atherosclerotic lesion distribution in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729–736 (2015). Evidence for a role of mechanical force in NOTCH1 ligand-induced activation via exposure of masked proteolytic site, thereby regulating sensitivity of NOTCH1 to metalloprotease cleavage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Langridge, P. D. & Struhl, G. Epsin-dependent ligand endocytosis activates Notch by force. Cell 171, 1383–1396 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fang, J. S. et al. Shear-induced Notch–Cx37–p27 axis arrests endothelial cell cycle to enable arterial specification. Nat. Commun. 8, 2149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ramasamy, S. K. et al. Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 7, 13601 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Mack, J. J. et al. NOTCH1 is a mechanosensor in adult arteries. Nat. Commun. 8, 1620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. van Engeland, N. C. A. et al. Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Sci. Rep. 9, 12415 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Caolo, V. et al. Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells. Elife 9, e50684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Polacheck, W. J. et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552, 258–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Laux, D. W. et al. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development 140, 3403–3412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sugden, W. W. et al. Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat. Cell Biol. 19, 653–665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Baeyens, N. et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J. Cell Biol. 214, 807–816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Park, H. et al. Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasia. Circulation 144, 805–822 (2021). Demonstration of the requirement of ALK1 for EC polarization against the direction of shear stress, with deficiency leading to enhanced integrin and downstream YAP/TAZ signaling in vitro, alongside development of vascular malformations in the mouse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Corti, P. et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138, 1573–1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Seghers, L. et al. Shear induced collateral artery growth modulated by endoglin but not by ALK1. J. Cell. Mol. Med. 16, 2440–2450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ola, R. et al. SMAD4 prevents flow induced arteriovenous malformations by inhibiting casein kinase 2. Circulation 138, 2379–2394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rochon, E. R., Menon, P. G. & Roman, B. L. Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 143, 2593–2602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Walshe, T. E., dela Paz, N. G. & D'Amore, P. A. The role of shear-induced transforming growth factor-beta signaling in the endothelium. Arterioscler. Thromb. Vasc. Biol. 33, 2608–2617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kunnen, S. J. et al. Fluid shear stress-induced TGF-β/ALK5 signaling in renal epithelial cells is modulated by MEK1/2. Cell. Mol. Life Sci. 74, 2283–2298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Deng, H. et al. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proc. Natl Acad. Sci. USA 118, e2105339118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, P. Y. et al. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 1, 912–926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chen, P. Y. et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 125, 4514–4528 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Mahmoud, M. M. et al. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci. Rep. 7, 3375 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Souilhol, C., Harmsen, M. C., Evans, P. C. & Krenning, G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc. Res. 114, 565–577 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Tzima, E., del Pozo, M., Shattil, S., Chien, S. & Schwartz, M. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20, 4639–4647 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yurdagul, A. Jr. & Orr, A. W. Blood brothers: hemodynamics and cell–matrix interactions in endothelial function. Antioxid. Redox Signal. 25, 415–434 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xanthis, I. et al. beta1 integrin is a sensor of blood flow direction. J. Cell Sci. 132, jcs229542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Haidekker, M. A., L'Heureux, N. & Frangos, J. A. Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am. J. Physiol. Heart. Circ. Physiol. 278, H1401–H1406 (2000).

    Article  CAS  PubMed  Google Scholar 

  196. Butler, P. J., Norwich, G., Weinbaum, S. & Chien, S. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am. J. Physiol. Cell Physiol. 280, C962–C969 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Yang, X. et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature 604, 377–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Lewis, A. H. & Grandl, J. Piezo1 ion channels inherently function as independent mechanotransducers. Elife 10, e70988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by grants from the BHF The Wilson and Olegario Class of 2020 (to C.A.); Wellcome Trust (senior research fellowship to E.T.); BHF (PG/16/29/32128, PG/19/70/34630 and RG/F/20/110025 to E.T.); MRC (2109HS002/AM111); John Fell Fund (to E.T.); the BHF Centre of Excellence, Oxford (RE/13/1/30181); and the Wellcome Trust grant 203141/Z/16/Z supporting the Wellcome Centre for Human Genetics. M.A.S. was supported by USPHS grant R01 HL155543. We thank J. Reader for illuminating discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and editing of this manuscript. C.A. generated the illustrations.

Corresponding authors

Correspondence to Martin A. Schwartz or Ellie Tzima.

Ethics declarations

Competing interests

The authors have no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Irena Levitan, Sara Baratchi and M. Luisa Iruela-Arispe for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aitken, C., Mehta, V., Schwartz, M.A. et al. Mechanisms of endothelial flow sensing. Nat Cardiovasc Res 2, 517–529 (2023). https://doi.org/10.1038/s44161-023-00276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00276-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing