Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Smad3 regulates smooth muscle cell fate and mediates adverse remodeling and calcification of the atherosclerotic plaque

Abstract

Atherosclerotic plaques consist mostly of smooth muscle cells (SMCs), and genes that influence SMC phenotype can modulate coronary artery disease (CAD) risk. Allelic variation at 15q22.33 has been identified by genome-wide association studies to modify the risk of CAD and is associated with the expression of SMAD3 in SMCs. However, the mechanism by which this gene modifies CAD risk remains poorly understood. Here we show that SMC-specific deletion of Smad3 in a murine atherosclerosis model resulted in greater plaque burden, more outward remodeling and increased vascular calcification. Single-cell transcriptomic analyses revealed that loss of Smad3 altered SMC transition cell state toward two fates: an SMC phenotype that governs both vascular remodeling and recruitment of inflammatory cells as well as a chondromyocyte fate. Together, the findings reveal that Smad3 expression in SMCs inhibits the emergence of specific SMC phenotypic transition cells that mediate adverse plaque features, including outward remodeling, monocyte recruitment and vascular calcification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Smad3ΔSMC mice have increased lesion burden in the ApoE null model.
Fig. 2: Loss of Smad3 alters cell fate decisions of transition SMCs in atherosclerotic lesions.
Fig. 3: A cluster of Mmp3-expressing R-SMC transition cells promote remodeling and inflammation.
Fig. 4: Smad3 regulates a transcriptional program associated with vascular outward expansion in conjunction with Sox9 and HoxB2.

Similar content being viewed by others

Data availability

Primary and processed data, along with all relevant metadata, have been deposited to the National Center of Biotechnology Information Gene Expression Omnibus under accession project number PRJNA794806.

References

  1. Centers for Disease Control and Prevention. Heart Disease Facts. https://www.cdc.gov/heartdisease/facts.htm.

  2. Reynolds, K. et al. Trends in incidence of hospitalized acute myocardial infarction in the Cardiovascular Research Network (CVRN). Am. J. Med. 130, 317–327 (2017).

    Article  PubMed  Google Scholar 

  3. Sidney, S. et al. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 1, 594–599 (2016).

    Article  PubMed  Google Scholar 

  4. Sabatine, M. S., Wasserman, S. M. & Stein, E. A. PCSK9 inhibitors and cardiovascular events. N. Engl. J. Med. 373, 774–775 (2015).

    PubMed  Google Scholar 

  5. Ridker, P. M. et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N. Engl. J. Med. 376, 1527–1539 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Harrington, R. A. Targeting inflammation in coronary artery disease. N. Engl. J. Med. 377, 1197–1198 (2017).

    Article  PubMed  Google Scholar 

  9. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Braenne, I. et al. Prediction of causal candidate genes in coronary artery disease loci. Arterioscler. Thromb. Vasc. Biol. 35, 2207–2217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, C. L., Pjanic, M. & Quertermous, T. From locus association to mechanism of gene causality: the devil is in the details. Arterioscler. Thromb. Vasc. Biol. 35, 2079–2080 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, B. et al. Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci. Am. J. Hum. Genet. 103, 377–388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakakura, K. et al. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 22, 399–411 (2013).

    Article  PubMed  Google Scholar 

  15. Shah, P. K. Mechanisms of plaque vulnerability and rupture. J. Am. Coll. Cardiol. 41, 15S–22S (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Falk, E., Nakano, M., Bentzon, J. F., Finn, A. V. & Virmani, R. Update on acute coronary syndromes: the pathologists’ view. Eur. Heart J. 34, 719–728 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Ferencik, M. et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol. 3, 144–152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Puchner, S. B. et al. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. J. Am. Coll. Cardiol. 64, 684–692 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alencar, G. F. et al. The stem cell pluripotency genes Klf4 and Oct4 regulate complex smc phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation 142, 2045–2059 (2020).

  20. Miller, C. L. et al. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat. Commun. 7, 12092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nurnberg, S. T. et al. Coronary artery disease associated transcription factor TCF21 regulates smooth muscle precursor cells that contribute to the fibrous cap. PLoS Genet. 11, e1005155 (2015).

  22. Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21, 628–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chappell, J. et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circ. Res. 119, 1313–1323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jacobsen, K. et al. Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. JCI Insight 2, e95890 (2017).

  26. Misra, A. et al. Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nat. Commun. 9, 2073 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murry, C. E., Gipaya, C. T., Bartosek, T., Benditt, E. P. & Schwartz, S. M. Monoclonality of smooth muscle cells in human atherosclerosis. Am. J. Pathol. 151, 697–705 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, J. B. et al. Environment-sensing Aryl hydrocarbon receptor inhibits the chondrogenic fate of modulated smooth muscle cells in atherosclerotic lesions. Circulation 142, 575–590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, P. et al. ZEB2 shapes the epigenetic landscape of atherosclerosis. Circulation 145, 469–489 (2022).

  30. Iyer, D. et al. Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS Genet. 14, e1007681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, J. B. et al. TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate a pro-inflammatory gene expression program in coronary artery smooth muscle cells. PLoS Genet. 13, e1006750 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miller, C. L. et al. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. PLoS Genet. 9, e1003652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller, C. L. et al. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet. 10, e1004263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142, 2060–2075 (2020).

  35. Grainger, D. J. Transforming growth factor β and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler. Thromb. Vasc. Biol. 24, 399–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Toma, I. & McCaffrey, T. A. Transforming growth factor-β and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res. 347, 155–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 94, 585–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Massague, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Morikawa, M., Derynck, R. & Miyazono, K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 8, a021873 (2016).

  40. Kriseman, M. et al. Uterine double-conditional inactivation of Smad2 and Smad3 in mice causes endometrial dysregulation, infertility, and uterine cancer. Proc. Natl Acad. Sci. USA 116, 3873–3882 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Q. et al. Redundant roles of SMAD2 and SMAD3 in ovarian granulosa cells in vivo. Mol. Cell. Biol. 28, 7001–7011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, Y., Richardson, J. A., Parada, L. F. & Graff, J. M. Smad3 mutant mice develop metastatic colorectal cancer. Cell 94, 703–714 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Daugherty, A. et al. Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 37, e131–e157 (2017).

    CAS  PubMed  Google Scholar 

  44. Hong, Y. K. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 225, 351–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Wilting, J. et al. The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased human tissues. FASEB J. 16, 1271–1273 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, P. Y. et al. Smooth muscle cell reprogramming in aortic aneurysms. Cell Stem Cell 26, 542–557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alexander, M. R. et al. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J. Clin. Invest. 122, 70–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barbier, M. et al. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am. J. Hum. Genet. 95, 736–743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo, D. C. et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ. Res. 118, 928–934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pinard, A., Jones, G. T. & Milewicz, D. M. Genetics of thoracic and abdominal aortic diseases. Circ. Res. 124, 588–606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Furumatsu, T., Tsuda, M., Taniguchi, N., Tajima, Y. & Asahara, H. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J. Biol. Chem. 280, 8343–8350 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Majesky, M. W. et al. Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4. Circ. Res. 120, 296–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Beyzade, S. et al. Influences of matrix metalloproteinase-3 gene variation on extent of coronary atherosclerosis and risk of myocardial infarction. J. Am. Coll. Cardiol. 41, 2130–2137 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Nemenoff, R. A. et al. SDF-1α induction in mature smooth muscle cells by inactivation of PTEN is a critical mediator of exacerbated injury-induced neointima formation. Arterioscler. Thromb. Vasc. Biol. 31, 1300–1308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vervoort, S. J. et al. SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis. Nucleic Acids Res. 46, 9578–9590 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ashcroft, G. S. et al. Role of Smad3 in the hormonal modulation of in vivo wound healing responses. Wound Repair Regen. 11, 468–473 (2003).

    Article  PubMed  Google Scholar 

  60. Ashcroft, G. S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol. 1, 260–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. McClelland, R. L. et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J. Am. Coll. Cardiol. 66, 1643–1653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Criqui, M. H. et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA 311, 271–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Motoyama, S. et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol. 50, 319–326 (2007).

    Article  PubMed  Google Scholar 

  64. Nicholls, S. J. et al. Coronary artery calcification and changes in atheroma burden in response to established medical therapies. J. Am. Coll. Cardiol. 49, 263–270 (2007).

    Article  PubMed  Google Scholar 

  65. Aengevaeren, V. L. et al. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation 136, 138–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Puri, R. et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J. Am. Coll. Cardiol. 65, 1273–1282 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Williams, M. C. et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART Study. J. Am. Coll. Cardiol. 73, 291–301 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. van Rosendael, A. R. et al. Association of high-density calcified 1K plaque with risk of acute coronary syndrome. JAMA Cardiol. 5, 282–290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ord, T. et al. Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci. Circ. Res. 129, 240–258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Newman, A. A. C. et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat. Metab. 3, 166–181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pedroza, A. J. et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in marfan syndrome aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 40, 2195–2211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Christersdottir, T. et al. Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade. Eur. Heart J. 40, 2495–2503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gomez, D. et al. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat. Med. 24, 1418–1429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ambrose, J. A. et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12, 56–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Y. Ryan, K. Hennig, P. McGuire and H. Chaib at the Stanford Genomic Sequencing and Service Center for performing 10x capture, library construction and sequencing. We also thank the Stanford shared FACS facility for required FACS analysis and experiments. Also, thanks to the Matzuk laboratory for providing us with conditional Smad3 knockout mice. Illustrations were made with BioRender software. D. Dichek (University of Washington) is acknowledged for advice regarding data interpretation.

This work was supported by National Institutes of Health grants F32HL143847 (P.C.), K08HL153798 (P.C.), K08HL152308 (R.W.), K08HL133375 (J.B.K.), F32HL154681 (A.P.), R01AR066629 (M.F.), R01HL109512 (T.Q.), R01HL134817 (T.Q.), R33HL120757 (T.Q.), R01HL139478 (T.Q.), R01HL156846 (T.Q.), R01HL151535 (T.Q.) and R01HL145708 (T.Q.) as well as a Human Cell Atlas grant from the Chan Zuckerberg Foundation. This work was also supported by American Heart Association grants 20CDA35310303 (P.C.) and 18CDA34110206 (R.W.).

Author information

Authors and Affiliations

Authors

Contributions

P.C. and T.Q.: designing research studies, conducting experiments, acquiring data, analyzing data, providing reagents and writing the manuscript. R.W., J.K., T.N. and R.K.: conducting experiments and acquiring data. Q.Z., A.P., D.S., D.I. and M.F.: analyzing data and providing other critical scientific input.

Corresponding author

Correspondence to Thomas Quertermous.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Peer review

Peer review information

Nature Cardiovascular thanks Marie-José Goumans and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental model validation.

(A) Measured weight of experimental mice used in sections at time of sacrifice. (B) Percent of total experimental mice cohort that survived to final time point at 24 weeks. (C) Schematic indicating the location of aortic root section used in the study (dashed line). (D) Aligned captured mRNA sequence of tdTomato positive cells in control (top) and Smad3ΔSMC tdTomato cells, showing absence of reads mapping to exon 2-3 which are flanked by LoxP sites. Atherosclerotic plaque in control (E) and Smad3ΔSMC (F) mice stained for phospho-Smad3 (brown), demonstrating loss of Smad3 in SMC lineage cells in the plaque. Scale bar: 50um.

Extended Data Fig. 2 Vascular lesion analysis.

(A) Representative image of Oil Red O-stained aortic root in control and Smad3ΔSMC mice, (B) quantified total Oil Red O positive area, and (C) quantified fraction of plaque Oil Red O staining (total Oil Red-O positive area over plaque area). (D) Representative image of trichrome stained aortic root in control and Smad3ΔSMC, with (E) quantified total acellular area, and (F) quantified normalized plaque acellular fraction (total acellular area over plaque area). Scale bar: 50um.

Extended Data Fig. 3 SMC cell state changes.

(A) Mesenchymal proliferation score of de-differentiated SMC in control and SMC specific Smad3ΔSMC mice. (B) Number of TUNEL labeled apoptotic cells per high magnification field (HPF) in control and Smad3ΔSMC mice.

Extended Data Fig. 4 R-SMC gene expresson.

(A) Expression of Mmp3 in lineage labeled (Cre positive) and non-lineage labelled (Cre negative) cells based on scRNAseq data. (B) Measured Mmp3 activity detected in isolated aortic tissue from wild type (brown) vs Smad3ΔSMC mice (orange). (C) Featureplot of lineage-traced cells expressing Mmp3 in control and Smad3ΔSMC aortic root. (D) High magnification of a section of atherosclerotic plaque with region of broken elastic lamina stained for Mmp3 expression (orange-brown color). Scale bar: 75um. (E) Fraction of transition SMC in control and Smad3ΔSMC lesions with R-SMC fate as defined by unbiased clustering (left) and by concurrent high Mmp3 and CxCl12 expression (right). (F) Number of migrated THP-1 cells after 3 hours of transwell-incubation with no cells, control HCASMC, and SMAD3-deficient HCASMC.

Extended Data Fig. 5 (A - H) FeaturePlot of Smad3, Smad2, Col2a1, Mki67, Lox, Mfap5, HoxB2, and Sox9 expression in SMC in atherosclerotic lesions in the aortic root.

(I) Individual cell expression of HoxB2, HoxB3, HoxB4, and Sox9 in lineage labeled cells in control and Smad3ΔSMC aortic root. (J) Control reporter luciferase activity in response to SOX9 and HOXB2 overexpression.

Extended Data Fig. 6

Replicate of Flag-SOX9 immunoprecipitation with endogenous SMAD3 immunodetection, with additional controls for anti-flag antibody.

Source data

Supplementary information

Source data

Source Data Fig. 1

Numerical data for all graphs and all figures.

Source Data File 2

FACS gating strategy for single-cell studies.

Source Data Fig. 4

Western blot used for Fig. 4f with mol weight markers.

Source Data Extended Data Fig. 6

Raw western blot gel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Wirka, R.C., Kim, J.B. et al. Smad3 regulates smooth muscle cell fate and mediates adverse remodeling and calcification of the atherosclerotic plaque. Nat Cardiovasc Res 1, 322–333 (2022). https://doi.org/10.1038/s44161-022-00042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00042-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing