Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically engineering metal vacancies in monolayer transition metal dichalcogenides

Abstract

Scanning probe microscopy and scanning transmission electron microscopy (STEM) are powerful tools to trigger atomic-scale motions, pattern atomic defects and lead to anomalous quantum phenomena in functional materials. However, these techniques have primarily manipulated surface atoms or atoms located at the beam exit plane, leaving buried atoms, which govern exotic quantum phenomena, largely unaffected. Here we propose an electron-beam-triggered chemical etching approach to engineer shielded metal atoms sandwiched between chalcogen layers in monolayer transition metal dichalcogenide (TMDC). Various metal vacancies \(({{{\mathrm{V}}}}_{{{\rm{MX}}}_{{n}}},\,{n}=0{-}6)\) have been fabricated via atomically focused electron beam in STEM. The parent TMDC surface was modified with surfactants, facilitating the ejection of sandwiched metal vacancies via charge transfer effect. In situ sequential STEM imaging corroborated that a combined chemical-induced knock-on effect and chalcogen vacancy-assisted metal diffusion process result in atom-by-atom vacancy formation. This approach is validated in 16 different TMDCs. The presence of metal vacancies strongly modified their magnetic and electronic properties, correlated with the unpaired chalcogen p and metal d electrons surrounding vacancies and adjacent distortions. These findings show a generic approach for engineering interior metal atoms with atomic precision, creating opportunities to exploit quantum phenomena at the atomic scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Forming metal vacancies via chemical-induced knock-on effect.
Fig. 2: Atomic structures and associated dynamics of metal vacancies.
Fig. 3: Generic fabrication of metal vacancies in an atlas of monolayer TMDCs.
Fig. 4: DFT-calculated electronic properties of metal vacancy complexes in MoSe2 monolayer.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Source data are provided with this paper.

References

  1. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal. Surf. Sci. 262, 218–220 (1993).

    CAS  Google Scholar 

  2. Khajetoorians, A. A. et al. Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat. Phys. 8, 497–503 (2012).

    Article  CAS  Google Scholar 

  3. Khajetoorians, A. A., Wegner, D., Otte, A. F. & Swart, I. Creating designer quantum states of matter atom-by-atom. Nat. Rev. Phys. 1, 703–715 (2019).

    Article  Google Scholar 

  4. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).

    Article  CAS  Google Scholar 

  6. Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  9. Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Dyck, O. et al. Atom-by-atom fabrication with electron beams. Nat. Rev. Mater. 4, 497–507 (2019).

    Article  CAS  Google Scholar 

  11. Sergei, V., Kalinin, Borisevich, A. & Jesse, S. Fire up the atom forge. Nature 539, 485–487 (2016).

    Article  Google Scholar 

  12. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Lin, J. et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9, 436–442 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, X. et al. Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 30, 1707281 (2018).

    Article  Google Scholar 

  15. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, J., Pantelides, S. T. & Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 9, 5189–5197 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, X. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776 (2013).

    Article  PubMed  Google Scholar 

  19. Feng, Q. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  PubMed  Google Scholar 

  20. Zhang, Q., Wee, A. T. S., Liang, Q., Zhao, X. & Liu, M. Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities. ACS Nano 15, 2165–2181 (2021).

    Article  PubMed  Google Scholar 

  21. Komsa, H. P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article  PubMed  Google Scholar 

  22. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Moody, G. et al. Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett. 121, 57403 (2018).

    Article  CAS  Google Scholar 

  24. Schuler, B. et al. Large spin–orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2. Phys. Rev. Lett. 123, 76801 (2019).

    Article  CAS  Google Scholar 

  25. Mitterreiter, E. et al. The role of chalcogen vacancies for atomic defect emission in MoS2. Nat. Commun. 12, 3822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X. et al. Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: from aggregated to atomic configuration. Adv. Mater. 35, e2206576 (2023).

    Article  PubMed  Google Scholar 

  27. Li, G. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 138, 16632–16638 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, G. et al. Engineering the crack structure and fracture behavior in monolayer MoS2 by selective creation of point defects. Adv. Sci. 9, 2200700 (2022).

    Article  CAS  Google Scholar 

  29. Avsar, A. et al. Probing magnetism in atomically thin semiconducting PtSe2. Nat. Commun. 11, 4806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, J. et al. Single atomic vacancy catalysis. ACS Nano 13, 9958–9964 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Egerton, R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 119, 72–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, W. et al. High-yield exfoliation of monolayer 1T′-MoTe2 as saturable absorber for ultrafast photonics. ACS Nano 15, 18448–18457 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen, E. P. et al. Electronic tuning of 2D MoS2 through surface functionalization. Adv. Mater. 27, 6225–6229 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Chu, X. S. et al. Direct covalent chemical functionalization of unmodified two-dimensional molybdenum disulfide. Chem. Mater. 30, 2112–2128 (2018).

    Article  CAS  Google Scholar 

  36. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Meyer, J. C. et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).

    Article  PubMed  Google Scholar 

  38. Lee, C. H. et al. Deep learning enabled strain mapping of single-atom defects in two-dimensional transition metal dichalcogenides with sub-picometer precision. Nano Lett. 20, 3369–3377 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Selhorst, R. et al. Precision modification of monolayer transition metal dichalcogenides via environmental e-beam patterning. ACS Nano 17, 2958–2967 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, Y. et al. Anisotropic point defects in rhenium diselenide monolayers. iScience 24, 103456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Niu, K. et al. Direct visualization of large-scale intrinsic atomic lattice structure and its collective anisotropy in air-sensitive monolayer 1T′-WTe2. Adv. Sci. 8, 2101563 (2021).

    Article  CAS  Google Scholar 

  42. Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 17, 256–261 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, F. et al. Emerging enhancement and regulation strategies for ferromagnetic 2D transition metal dichalcogenides. Adv. Sci. 10, 2300952 (2023).

    Article  CAS  Google Scholar 

  44. Madsen, J. & Susi, T. The abTEM code: transmission electron microscopy from first principles. Open Res. Eur. 1, 24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Khan, A., Lee, C. H., Huang, P. Y. & Clark, B. K. Leveraging generative adversarial networks to create realistic scanning transmission electron microscopy images. NPJ Comput. Mater. 9, 85 (2023).

    Article  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  47. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  51. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Cococcioni, M. & De Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

X.Z. thanks the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (grant no.52273279), the Beijing Natural Science Foundation (no. Z220020) and the open research fund of Songshan Lake Materials Laboratory (grant no. 2023SLABFN26). J.Q. thanks Ministry of Science and Technology (MOST) of China (grant no. 2018YFE0202700), the National Natural Science Foundation of China (grant nos. 11974422, 12204534 and 62171035) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB30000000). The authors acknowledge the Electron Microscopy Laboratory of Peking University, China for the use of Cs-corrected Nion U-HERMES200 scanning transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and J. Zhang conceived and designed the experiments. X.H. and Y.L. synthesized materials and performed the STEM characterizations. M.N. and J.Q. built the theoretical model and performed DFT calculations. X.H., M.N. and Y.L. conducted all analysis under the supervision of J.Q., J. Zhang and X.Z. R.L., J.D., X.W., A.V.T., W.J., Y.W. and J. Zhou contributed to the sample measurements and mechanism understanding. Y.H. conducted deep deep-learning experiment. X.H., M.N., J.Q. and X.Z. co-wrote the manuscript. All the authors discussed the results and contributed to preparing the manuscript.

Corresponding authors

Correspondence to Jingsi Qiao, Jin Zhang or Xiaoxu Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Marijn van Huis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, discussion, Tables 1 and 2, and references.

Supplementary Data

Spin density and structures of metal vacancy in TMDCs.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Niu, M., Luo, Y. et al. Atomically engineering metal vacancies in monolayer transition metal dichalcogenides. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00501-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing