Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-glycoside synthesis through combined copper- and photoredox-catalysed N-glycosylation of N-nucleophiles

Abstract

State-of-the-art glycosylation methods primarily rely on ionic reactions of heteroatomic nucleophiles with electrophilic glycosyl oxocarbenium intermediates. Although such ionic glycosylation strategies can effectively form O-glycosides, their use in N-glycoside synthesis is often plagued by the subdued reactivity of N-nucleophiles under the acidic reaction conditions required for glycosyl donor activation. Exploration of the reactivity of glycosyl radical intermediates has begun to offer new glycosylation pathways. However, despite recent progress in radical-mediated synthesis of C-glycosides, harnessing the reactivity of glycosyl radicals for the generation of canonical O- or N-glycosides remains elusive. Here we report the development of a glycosyl radical-mediated N-glycosylation reaction using readily accessible glycosyl sulfone donors and N-nucleophiles under mild copper-catalysed, photoredox-promoted conditions. The method is efficient, selective, redox neutral and broadly applicable, enabling ready access to a variety of complex N-glycosides and nucleosides in a streamlined fashion. Importantly, the present system tolerates the presence of water and offers unique chemoselectivity, allowing selective reaction of NH sites over hydroxyl groups that would otherwise pose challenges in conventional ionic N-glycosylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glycosyl radical-mediated synthesis of N-glycosides.
Fig. 2: Model N-glycosylation reaction of 2 under Cu-catalysed, photoredox-promoted conditions.
Fig. 3: Scope of N-nucleophiles in Cu-catalysed N-glycosylation reactions with sulfone donor 6.
Fig. 4: Substrate scope of the Cu-catalysed desulfonylative N-glycosylation reaction.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Crystallographic data for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre under deposition no. CCDC 2266734 (51). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.

References

  1. Shivatare, S. S., Shivatare, V. S. & Wong, C.-H. Glycoconjugates: synthesis, functional studies, and therapeutic developments. Chem. Rev. 122, 15603–15671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang, Y., Zhang, X. & Yu, B. O-glycosylation methods in the total synthesis of complex natural glycosides. Nat. Prod. Rep. 32, 1331–1355 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Bokor, É. et al. C-glycopyranosyl arenes and hetarenes: synthetic methods and bioactivity focused on antidiabetic potential. Chem. Rev. 117, 1687–1764 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Hsu, C.-H., Hung, S.-C., Wu, C.-Y. & Wong, C.-H. Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. Engl. 50, 11872–11923 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Sangwan, R., Khanam, A. & Mandal, P. K. An overview on the chemical N-functionalization of sugars and formation of N-glycosides. Eur. J. Org. Chem. 2020, 5949–5977 (2020).

    Article  CAS  Google Scholar 

  6. Jordheim, L. P., Durantel, D., Zoulim, F. & Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug. Discov. 12, 447–464 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Q., Sun, J., Zhu, Y., Zhang, F. & Yu, B. An efficient approach to the synthesis of nucleosides: gold(I)-catalyzed N-glycosylation of pyrimidines and purines with glycosyl ortho-alkynyl benzoates. Angew. Chem. Int. Ed. Engl. 50, 4933–4936 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Stanley P. et al. in Essentials of Glycobiology 4th edn (eds Varki, A. et al.) Ch. 9 (Cold Spring Harbor Laboratory Press, 2022).

  9. Chen, Z., Sato, S., Geng, Y., Zhang, J. & Liu, H.-W. Identification of the early steps in herbicidin biosynthesis reveals an atypical mechanism of c-glycosylation. J. Am. Chem. Soc. 144, 15653–15661 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loustaud-Ratti, V. et al. Ribavirin: past, present and future. World J. Hepatol. 8, 123–130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Staudacher, E., Van Damme, E. J. M. & Smagghe, G. Glycosylation—the most diverse post-translational modification. Biomolecules 12, 1313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakraborty, S., Mishra, B., Das, P. R., Pasari, S. & Hotha, S. Synthesis of N-glycosides by silver-assisted gold catalysis. Angew. Chem. Int. Ed. Engl. 62, e202214167 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Ding, F., William, R. & Liu, X.-W. Ferrier-type N-glycosylation: synthesis of N-glycosides of enone sugars. J. Org. Chem. 78, 1293–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Li, P. et al. Glycosyl ortho-(1-phenylvinyl)benzoates versatile glycosyl donors for highly efficient synthesis of both O-glycosides and nucleosides. Nat. Commun. 11, 405 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Liu, R. et al. Synthesis of nucleosides and deoxynucleosides via gold(I)-catalyzed N-glycosylation of glycosyl (Z)-ynenoates. Org. Lett. 24, 9479–9484 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen, M. M. & Pedersen, C. M. Catalytic glycosylations in oligosaccharide synthesis. Chem. Rev. 118, 8285–8358 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Panza, M., Pistorio, S. G., Stine, K. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev. 118, 8105–8150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi, Y., Nakatsuji, Y., Li, S., Tsuzuki, S. & Takemoto, T. Direct N-glycofunctionalization of amides with glycosyl trichloroacetimidate by thiourea/halogen bond donor co-catalysis. Angew. Chem. Int. Ed. Engl. 57, 3646–3650 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. An, S. et al. Palladium-catalyzed O- and N-glycosylation with glycosyl chlorides. CCS Chem. 3, 1821–1829 (2021).

    Article  CAS  Google Scholar 

  20. Toshima, K. & Tasuta, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem. Rev. 93, 1503–1531 (1993).

    Article  CAS  Google Scholar 

  21. Mukherjee, M. M., Ghosh, R. & Hanover, J. A. Recent advances in stereoselective chemical O-glycosylation reactions. Front. Mol. Biosci. 9, 896187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, A. et al. Recent advances in glycosylation involving novel anomeric radical precursors. J. Carbohydr. Chem. 40, 361–400 (2021).

    Article  CAS  ADS  Google Scholar 

  23. Xu, L.-Y., Fan, N.-L. & Hu, X.-G. Recent development in the synthesis of C-glycosides involving glycosyl radicals. Org. Biomol. Chem. 18, 5095–5109 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, Y., Zhang, Y., Lee, B. C. & Koh, M. J. Diversification of glycosyl compounds via glycosyl radicals. Angew. Chem. Int. Ed. Engl. 62, e202305138 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Shang, W. & Niu, D. Radical pathway glycosylation empowered by bench-stable glycosyl donors. Acc. Chem. Res. 56, 2473–2488 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, A., Yang, B., Zhou, Z. & Zhu, F. Recent advances in transition-metal-catalyzed glycosyl cross-coupling reactions. Chem. Catal. 2, 3430–3470 (2022).

    Article  CAS  Google Scholar 

  27. Wei, Y., Lin, L. Q. H., Lee, B. C. & Koh, M. J. Recent advances in first-row transition metal-catalyzed reductive coupling reactions for π-bond functionalization and C-glycosylation. Acc. Chem. Res. 56, 3292–3312 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Q. et al. Visible light activation enables desulfonylative cross-coupling of glycosyl sulfones. Nat. Synth. 1, 967–974 (2022).

    Article  ADS  Google Scholar 

  29. Jiang, Y., Wang, Q., Zhang, X. & Koh, M. J. Synthesis of C-glycosides by Ti-catalyzed stereoselective glycosyl radical functionalization. Chem 7, 3377–3392 (2021).

    Article  CAS  Google Scholar 

  30. Xu, S. et al. Generation and use of glycosyl radicals under acidic conditions: glycosyl sulfinates as precursors. Angew. Chem. Int. Ed. Engl. 62, e202218303 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Shang, W. et al. Generation of glycosyl radicals from glycosyl sulfoxides and its use in the synthesis of C-linked glycoconjugates. Angew. Chem. Int. Ed. Engl. 60, 385–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Nagatomo, M. & Inoue, M. Convergent assembly of highly oxygenated natural products enabled by intermolecular radical reactions. Acc. Chem. Res. 54, 595–604 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Masuda, K., Nagatomo, M. & Inoue, M. Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions. Nat. Chem. 9, 207–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Wan, L.-Q. et al. Nonenzymatic stereoselective S-glycosylation of polypeptides and proteins. J. Am. Chem. Soc. 143, 11919–11926 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, L. et al. Visible-light-mediated synthesis of non-anomeric S-aryl glycosides via a photoactive electron-donor–acceptor complex. Chem. Commun. 59, 13759–13762 (2023).

    Article  Google Scholar 

  36. Andrews, S., Becker, J. J. & Gagné, M. R. Intermolecular addition of glycosyl halides to alkenes mediated by visible light. Angew. Chem. Int. Ed. Engl. 49, 7274–7276 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Andrews, S., Becker, J. J. & Gagné, M. R. A photoflow reactor for the continuous photoredox-mediated synthesis of C-glycoamino acids and C-glycolipids. Angew. Chem. Int. Ed. Engl. 51, 4140–4143 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Q. et al. Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides. Nat. Synth. 1, 235–244 (2022).

    Article  ADS  Google Scholar 

  39. Wei, Y., Ben-zvi, B. & Diao, T. Diastereoselective synthesis of aryl C-glycosides from glycosyl esters via C−O bond homolysis. Angew. Chem. Int. Ed. Engl. 60, 9433–9438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, F. et al. Catalytic and photochemical strategies to stabilized radicals based on anomeric nucleophiles. J. Am. Chem. Soc. 142, 11102–11113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, J. & Gong, H. Stereoselective preparation of α-C-vinyl/aryl glycosides via nickel-catalyzed reductive coupling of glycosyl halides with vinyl and aryl halides. Org. Lett. 20, 7991–7995 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, C. et al. Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling. Nat. Synth. 2, 251–260 (2023).

    ADS  Google Scholar 

  43. Zhang, C. et al. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat. Chem. 14, 686–694 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Zuo, H., Zhang, C., Zhang, Y. & Niu, D. Base-promoted glycosylation allows protecting group-free and stereoselective O-glycosylation of carboxylic acids. Angew. Chem. Int. Ed. Engl. 62, e202309887 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Hossain, A., Bhattacharyya, A. & Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 364, eaav9713 (2019).

    Article  PubMed  Google Scholar 

  46. Alvarez, E. M. et al. O-, N- and C-bicyclopentylation using thianthrenium reagents. Nat. Synth. 2, 548–556 (2023).

    Article  ADS  Google Scholar 

  47. Chen, J. J. et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines. Nature 618, 294–300 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Bissember, A. C., Lundgren, R. J., Creutz, S. E., Peters, J. C. & Fu, G. C. Transition-metal-catalyzed alkylations of amines with alkyl halides: photoinduced, copper-catalyzed couplings of carbazoles. Angew. Chem. Int. Ed. Engl. 52, 5129–5133 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Liang, Y., Zhang, X. & MacMillan, D. W. C. Decarboxylative sp3 C-N coupling via dual copper and photoredox catalysis. Nature 559, 83–88 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Creutz, S. E., Lotito, K. J., Fu, G. C. & Peters, J. C. Photoinduced Ullmann C–N coupling: demonstrating the viability of a radical pathway. Science 338, 647–651 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Kainz, Q. M. et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Caiger, L., Zhao, H., Constantin, T., Douglas, J. J. & Leonori, D. The merger of aryl radical-mediated halogen-atom transfer (XAT) and copper catalysis for the modular cross-coupling-type functionalization of alkyl iodides. ACS Catal. 13, 4985–4991 (2023).

    Article  CAS  Google Scholar 

  53. Dong, X.-Y., Li, Z.-L., Gu, Q.-S. & Liu, X.-Y. Ligand development for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides. J. Am. Chem. Soc. 144, 17319–17329 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Górski, B., Barthelemy, A.-L., Douglas, J. J., Juliá, F. & Leonori, D. Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer. Nat. Catal. 4, 623–630 (2021).

    Article  Google Scholar 

  55. Singh, Y., Geringer, S. A. & Demchenko, A. V. Synthesis and glycosidation of anomeric halides: evolution from early studies to modern methods of the 21st Century. Chem. Rev. 122, 11701–11758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Le, C., Chen, T. Q., Liang, T., Zhang, P. & Macmillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 360, 1010–1014 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Oka, N., Mori, A., Suzuki, K. & Ando, K. Stereoselective synthesis of ribofuranoid exo-glycals by one-pot Julia olefination using ribofuranosyl sulfones. J. Org. Chem. 86, 657–673 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, Q., Lee, B. C., Song, N. & Koh, M. J. Stereoselective C-aryl glycosylation by catalytic cross-coupling of heteroaryl glycosyl sulfones. Angew. Chem. Int. Ed. Engl. 62, e202301081 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  60. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lemaire, C. F. et al. Fast production of highly reactive no-carrier-added [18F]fluoride for the labeling of radiopharmaceuticals. Angew. Chem. Int. Ed. Engl. 49, 3161–3164 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Miao, W. et al. Iron-catalyzed difluoromethylation of arylzincs with difluoromethyl 2-pyridyl sulfone. J. Am. Chem. Soc. 140, 880–883 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Trost, B. M. & Kalnmals, C. A. Sulfones as chemical chameleons: versatile synthetic equivalents of small-molecule synthons. Chem. Eur. J. 25, 11193–11213 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Nambo, M., Maekawa, Y. & Crudden, C. M. Desulfonylative transformations of sulfones by transition-metal catalysis, photocatalysis, and organocatalysis. ACS Catal. 12, 3013–3032 (2022).

    Article  CAS  Google Scholar 

  65. Corpas, J., Kim-Lee, S.-H., Mauleón, P., Arrayás, R. G. & Carretero, J. C. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C–S bond functionalization of sulfones. Chem. Soc. Rev. 51, 6774–6823 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, F. & Walczak, M. A. Stereochemistry of transition metal complexes controlled by the metallo-anomeric effect. J. Am. Chem. Soc. 142, 15127–15136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21, 456–463 (1988).

    Article  CAS  Google Scholar 

  68. Lõkov, M. et al. On the basicity of conjugated nitrogen heterocycles in different media. Eur. J. Org. Chem. 2017, 4475–4489 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Programme of China (no. 2022YFA1504303), the National Natural Science Foundation of China (no. 92256302), Frontiers Science Center for New Organic Matter (no. 63181206), Fundamental Research Funds for the Central Universities (no. NKU63231195), Haihe Laboratory of Sustainable Chemical Transformations (to G.C.) and the Ministry of Education of Singapore Academic Research Fund Tier 2 (no. A-8000941-00-00 to M.J.K.).

Author information

Authors and Affiliations

Authors

Contributions

Q.S. was responsible for the initial discovery of the Cu-catalysed N-glycosylation reaction and conducted most of the substrate scope exploration and mechanistic studies. Q.W. was heavily involved in reaction optimization and mechanistic studies. W.Q. helped with expansion of substrate scope. K.J. conducted reduction potential measurement experiments. G.H. supervised parts of the project. M.J.K. supervised the project and edited the paper. G.C. oversaw the entire project and wrote the paper.

Corresponding authors

Correspondence to Ming Joo Koh or Gong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Feng Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Detailed synthetic procedures, additional control experiments, compound characterization, liquid chromatography–mass spectrometry tracing, X-ray crystallography and NMR spectra.

Supplementary Data 1

Crystallographic data for compound 51 (no. CCDC 2266734).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Wang, Q., Qin, W. et al. N-glycoside synthesis through combined copper- and photoredox-catalysed N-glycosylation of N-nucleophiles. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00496-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing