Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible-light-driven synthesis of N-heteroaromatic carboxylic acids by thiolate-catalysed carboxylation of C(sp²)–H bonds using CO2

Abstract

Catalytic carboxylation of C–H bonds using CO2 is a sustainable and economic strategy to produce valuable carboxylic acids. However, this process presents challenges due to the low reactivity of C–H bonds and difficulties in controlling regioselectivity. Although progress has been made in this field, catalytic carboxylation of C–H bonds in azines with CO2 is still a challenge. Here we report a visible-light-driven, thiolate-catalysed carboxylation of azine C(sp2)–H bonds using CO2. A variety of azines, including quinolines, pyridines, phenanthroline, naphthyridine and acridine, can undergo catalytic carboxylation to give N-heteroaromatic carboxylic acids in good yields and with excellent regiocontrol. This method operates under mild and transition-metal-free reaction conditions, is tolerant of a wide range of functional groups and is scalable. The utility of this method is demonstrated by application to the synthesis of bioactive molecules, such as cinchophen and brequinar derivatives, and to the modification of commonly used nitrogen ligands, including bipyridines, terpyridine and phenanthroline. Mechanistic investigations reveal the formation of an electron donor–acceptor complex between the thiolate catalyst and azine substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The importance and approaches of N-heteroaromatic carboxylic acids.
Fig. 2: Synthetic applications.
Fig. 3: Mechanistic investigations.
Fig. 4: Computational studies.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information files. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2223857 (2z), 2219986 (6e) and 2268054 (6f). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

    Article  PubMed  ADS  Google Scholar 

  2. Wang, S. & Xi, C. Recent advances in nucleophile-triggered CO2-incorporated cyclization leading to heterocycles. Chem. Soc. Rev. 48, 382–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Grignard, B., Gennen, S., Jérôme, C., Kleij, A. W. & Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 48, 4466–4514 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Cai, B., Cheo, H. W., Liu, T. & Wu, J. Light-promoted organic transformations utilizing carbon-based gas molecules as feedstocks. Angew. Chem. Int. Ed. 60, 18950–18980 (2021).

    Article  CAS  Google Scholar 

  5. Ye, J.-H., Ju, T., Huang, H., Liao, L.-L. & Yu, D.-G. Radical carboxylative cyclizations and carboxylations with CO2. Acc. Chem. Res. 54, 2518–2531 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. He, M., Sun, Y. & Han, B. Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. Int. Ed. 61, e202112835 (2022).

    Article  CAS  ADS  Google Scholar 

  7. Huang, K., Sun, C.-L. & Shi, Z.-J. Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chem. Soc. Rev. 40, 2435–2452 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Tortajada, A., Juliá-Hernández, F., Börjesson, M., Moragas, T. & Martin, R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed. 57, 15948–15982 (2018).

    Article  CAS  Google Scholar 

  9. Yeung, C. S. Photoredox catalysis as a strategy for CO2 incorporation: direct access to carboxylic acids from a renewable feedstock. Angew. Chem. Int. Ed. 58, 5492–5502 (2019).

    Article  CAS  Google Scholar 

  10. Zhang, L., Li, Z., Takimoto, M. & Hou, Z. Carboxylation reactions with carbon dioxide using N-heterocyclic carbene–copper catalysts. Chem. Rec. 20, 494–512 (2020).

    Article  PubMed  Google Scholar 

  11. Zhang, Z. et al. Visible-light-driven catalytic reductive carboxylation with CO2. ACS Catal. 10, 10871–10885 (2020).

    Article  CAS  Google Scholar 

  12. He, X., Qiu, L.-Q., Wang, W.-J., Chen, K.-H. & He, L.-N. Photocarboxylation with CO2: an appealing and sustainable strategy for CO2 fixation. Green Chem. 22, 7301–7320 (2020).

    Article  CAS  Google Scholar 

  13. Zhang, G., Cheng, Y., Beller, M. & Chen, F. Direct carboxylation with carbon dioxide via cooperative photoredox and transition-metal dual catalysis. Adv. Synth. Catal. 363, 1583–1596 (2021).

    Article  CAS  Google Scholar 

  14. Maag, H. Prodrugs of Carboxylic Acids (Springer, 2007).

  15. Gooβen, L., Rodríguez, J. N. & Gooβen, K. Carboxylic acids as substrates in homogeneous catalysis. Angew. Chem. Int. Ed. 47, 3100–3120 (2008).

    Article  Google Scholar 

  16. Ackermann, L. Transition-metal-catalyzed carboxylation of C–H bonds. Angew. Chem. Int. Ed. 50, 3842–3844 (2011).

    Article  CAS  Google Scholar 

  17. Tommasi, I. Direct carboxylation of C(sp3)–H and C(sp2)–H bonds with CO2 by transition-metal-catalyzed and base-mediated reactions. Catalysts 7, 380 (2017).

    Article  Google Scholar 

  18. Gui, Y.-Y., Zhou, W.-J., Ye, J.-H. & Yu, D.-G. Photochemical carboxylation of activated C(sp3)–H with CO2. ChemSusChem 10, 1337–1340 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Hong, J., Li, M., Zhang, J., Sun, B. & Mo, F. C–H bond carboxylation with carbon dioxide. ChemSusChem 12, 6–39 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Pimparkar, S. et al. Recent advances in the incorporation of CO2 for C–H and C–C bond functionalization. Green Chem. 23, 9283–9317 (2021).

    Article  CAS  Google Scholar 

  21. Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. Copper-catalyzed direct carboxylation of C–H bonds with carbon dioxide. Angew. Chem. Int. Ed. 49, 8670–8673 (2010).

    Article  CAS  Google Scholar 

  22. Boogaerts, I. I., Fortman, G. C., Furst, M. R., Cazin, C. S. & Nolan, S. P. Carboxylation of N–H/C–H bonds using N-heterocyclic carbene copper(I) complexes. Angew. Chem. Int. Ed. 49, 8674–8677 (2010).

    Article  CAS  Google Scholar 

  23. Mizuno, H., Takaya, J. & Iwasawa, N. Rhodium(I)-catalyzed direct carboxylation. of arenes with CO2 via chelation-assisted C–H bond activation. J. Am. Chem. Soc. 133, 1251–1253 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Sasano, K., Takaya, J. & Iwasawa, N. Palladium(II)-catalyzed direct carboxylation of alkenyl C–H bonds with CO2. J. Am. Chem. Soc. 135, 10954–10957 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Michigami, K., Mita, T. & Sato, Y. Cobalt-catalyzed allylic C(sp3)–H carboxylation with CO2. J. Am. Chem. Soc. 139, 6094–6097 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Fu, L. et al. Ligand-enabled site-selectivity in a versatile rhodium(II)-catalysed aryl C–H carboxylation with CO2. Nat. Catal. 1, 469–478 (2018).

    Article  CAS  Google Scholar 

  27. Pei, C., Zong, J., Han, S., Li, B. & Wang, B. Ni-catalyzed direct carboxylation of an unactivated C–H bond with CO2. Org. Lett. 22, 6897–6902 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Börjesson, M. et al. Remote sp2 C–H carboxylation via catalytic 1,4-Ni migration with CO2. J. Am. Chem. Soc. 142, 16234–16239 (2020).

    Article  PubMed  Google Scholar 

  29. Saito, T., Caner, J., Toriumi, N. & Iwasawa, N. Rhodium-catalyzed meta-selective C–H carboxylation reaction of 1,1-diarylethylenes via hydrorhodation–rhodium migration. Angew. Chem. Int. Ed. 60, 23349–23356 (2021).

    Article  CAS  Google Scholar 

  30. Kemper, G., Hölscher, M. & Leitner, W. Pd(II)-catalyzed carboxylation of aromatic C–H bonds with CO2. Sci. Adv. 9, eadf2966 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishida, N., Masuda, Y., Uemoto, S. & Murakami, M. A light/ketone/copper system for carboxylation of allylic C–H bonds of alkenes with CO2. Chem. Eur. J. 22, 6524–6527 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Seo, H., Katcher, M. H. & Jamison, T. F. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nat. Chem. 9, 453–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Ishida, N., Masuda, Y., Imamura, Y., Yamazaki, K. & Murakami, M. Carboxylation of benzylic and aliphatic C–H bonds with CO2 induced by light/ketone/nickel. J. Am. Chem. Soc. 141, 19611–19615 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Meng, Q. Y., Schirmer, T. E., Berger, A. L., Donabauer, K. & König, B. Photocarboxylation of benzylic C–H Bonds. J. Am. Chem. Soc. 141, 11393–11397 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Schmalzbauer, M. et al. Redox-neutral photocatalytic C–H carboxylation of arenes and styrenes with CO2. Chem 6, 2658–2672 (2020).

    Article  CAS  Google Scholar 

  36. Khan, E. Pyridine derivatives as biologically active precursors; organics and selected coordination complexes. ChemistrySelect 6, 3041–3064 (2021).

    Article  CAS  Google Scholar 

  37. Ghodsi, R., Zarghi, A., Daraei, B. & Hedayati, M. Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. 18, 1029–1033 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Madak, J. T. et al. Design, synthesis, and biological evaluation of 4-quinoline carboxylic acids as inhibitors of dihydroorotate dehydrogenase. J. Med. Chem. 61, 5162–5186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weyesa, A. & Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: a review. RSC Adv. 10, 20784–20793 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Meng, Q. Y., Wang, S. & König, B. Carboxylation of aromatic and aliphatic bromides and triflates with CO2 by dual visible-light-nickel catalysis. Angew. Chem. Int. Ed. 56, 13426–13430 (2017).

    Article  CAS  Google Scholar 

  41. Ma, C. et al. Nickel-catalyzed carboxylation of aryl and heteroaryl fluorosulfates using carbon dioxide. Org. Lett. 21, 2464–2467 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Fuchs, P., Hess, U., Holst, H. H. & Lund, H. Electrochemical carboxylation of some heteroaromatic compounds. Acta Chem. Scand. B 35, 185–192 (1981).

    Article  Google Scholar 

  43. Khoshro, H., Zare, H. R., Jafari, A. A. & Gorji, A. Dual activity of electrocatalytic activated CO2 toward pyridine for synthesis of isonicotinic acid: an EC′C′C mechanism. Electrochem. Commun. 51, 69–71 (2015).

    Article  CAS  Google Scholar 

  44. Zhao, Z. et al. Site-selective electrochemical C–H carboxylation of arenes with CO2. Angew. Chem. Int. Ed. 62, e202214710 (2023).

    Article  CAS  Google Scholar 

  45. Sun, G.-Q. et al. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 615, 67–72 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Lima, C. G. S., Lima, T. D., Duarte, M., Jurberg, I. D. & Paixão, M. W. Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications. ACS Catal. 6, 1389–1407 (2016).

    Article  CAS  Google Scholar 

  47. Crisenza, G. E. M., Mazzarella, D. & Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor–acceptor complexes. J. Am. Chem. Soc. 142, 5461–5476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, H., Liu, Y. & Chiba, S. Leveraging of sulfur anions in photoinduced molecular transformations. JACS Au 1, 2121–2129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, S., Wang, H. & König, B. Light-induced single-electron transfer processes involving sulfur anions as catalysts. J. Am. Chem. Soc. 143, 15530–15537 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, W. et al. Arylcarboxylation of unactivated alkenes with CO2 via visible-light photoredox catalysis. Nat. Commun. 14, 3529 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Saux, E. L., Georgiou, E., Dmitriev, I. A., Hartley, W. C. & Melchiorre, P. Photochemical organocatalytic functionalization of pyridines via pyridinyl radicals. J. Am. Chem. Soc. 145, 47–52 (2023).

    Article  PubMed  Google Scholar 

  52. Todres, Z. V. Ion-Radical Organic Chemistry: Principles and Applications (CRC Press, 2008).

    Book  Google Scholar 

  53. You, Y. et al. Electrochemical dearomative dicarboxylation of heterocycles with highly negative reduction potentials. J. Am. Chem. Soc. 144, 3685–3695 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Ye, J.-H. et al. Visible-light-driven iron-promoted thiocarboxylation of styrenes and acrylates with CO2. Angew. Chem. Int. Ed. 56, 15416–15420 (2017).

    Article  CAS  ADS  Google Scholar 

  55. Ju, T. et al. Dicarboxylation of alkenes, allenes and (hetero) arenes with CO2 via visible-light photoredox catalysis. Nat. Catal. 4, 304–311 (2021).

    Article  CAS  Google Scholar 

  56. Chatterjee, A. & König, B. Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angew. Chem. Int. Ed. 58, 14289–14294 (2019).

    Article  CAS  Google Scholar 

  57. Cole, J. P. et al. Organocatalyzed Birch reduction driven by visible light. J. Am. Chem. Soc. 142, 13573–13581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crooks, R. M. & Bard, J. A. Electrochemistry in near-critical and supercritical fluids: part V. The dimerization of quinoline and acridine radical anions and dianions in ammonia from −70 °C to 150 °C. J. Electroanal. Chem. 240, 253–280 (1988).

    Article  CAS  Google Scholar 

  59. Carelli, V. et al. On the regio- and stereoselectivity of pyridinyl radical dimerization. New J. Chem. 22, 999–1004 (1998).

    Article  CAS  Google Scholar 

  60. Meng, Q.-Y., Wang, S. & König, B. Carboxylation of aromatic and aliphatic bromides and triflates with CO2 by dual visible-light–nickel catalysis. Angew. Chem. Int. Ed. 56, 13426–13430 (2019).

    Article  Google Scholar 

  61. Huang, Y. et al. A versatile catalyst-free redox system mediated by carbon dioxide radical and dimsyl anions. Cell Rep. Phys. Sci. 3, 100994 (2022).

    Article  CAS  Google Scholar 

  62. Prabagar, B., Yang, Y. & Shi, Z. Site-selective C–H functionalization to access the arene backbone of indoles and quinolines. Chem. Soc. Rev. 50, 11249–11269 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Shao, M. et al. Discovery and identification of PIM-1 kinase inhibitors through a hybrid screening approach. Mol. Diversity 18, 335–344 (2014).

    Article  CAS  ADS  Google Scholar 

  64. Zhao, Z. et al. Palladium-catalyzed three-component cascade reaction of nitriles: synthesis of 2-arylquinoline-4-carboxylates. Org. Lett. 23, 7955–7960 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, C., Li, K. & Shang, R. Arenethiolate as a dual function catalyst for photocatalytic defluoroalkylation and hydrodefluorination of trifluoromethyls. ACS Catal. 12, 4103–4109 (2022).

    Article  CAS  Google Scholar 

  66. Majhi, J. et al. Practical, scalable, and transition metal-free visible light-induced heteroarylation route to substituted oxindoles. Chem. Sci. 14, 897–902 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, Z., Lu, T. & Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165, 461–467 (2020).

    Article  CAS  Google Scholar 

  68. Domingo, L. R. & Pérez, P. Global and local reactivity indices for electrophilic/nucleophilic free radicals. Org. Biomol. Chem. 11, 4350–4358 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  70. Paton, R. patonlab/Kinisot v.2.0.1. Zenodo; https://doi.org/10.5281/zenodo.6831009 (2022).

  71. Glmez-Gallego, M. & Sierra, M. A. Kinetic Isotope effects in the study of organometallic reaction mechanisms. Chem. Rev. 111, 4857–4963 (2011).

    Article  Google Scholar 

  72. Alegre-Requena, J. V., Marqués-López, E. & Herrera, R. P. Optimizing the accuracy and computational cost in theoretical squaramide catalysis: the Henry reaction. Chem. Eur. J. 23, 15336–15347 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (22225106 (D.-G.Y.), 22101191 (W.Z.), 22201027 (L.-L.L.)), Fundamental Research Funds from Sichuan University (2020SCUNL102 (D.-G.Y.)), the China Scholarship Council (202206240054 (W.Z.)) and the Fundamental Research Funds for the Central Universities. We thank X. Qi from Wuhan University for valuable discussion and help. We also thank X. Wang from the Analysis and Testing Center of Sichuan University and J. Li, Q. Zhang and D. Deng from the College of Chemistry at Sichuan University for compound testing.

Author information

Authors and Affiliations

Authors

Contributions

D.-G.Y. and J.-H.Y. conceived and designed the study. Y.-X.J., L.-L.L., J.-H.Y., Y.L. and D.-G.Y. wrote the paper. Y.-X.J., L.-L.L., T.-Y.G., W.-H.X., W.Z., L.S. and G.-Q. S. performed the experiments and mechanistic studies. L.-L.L. did the DFT calculations under supervision from Y.L. All authors contributed to the analysis and interpretation of the data.

Corresponding authors

Correspondence to Jian-Heng Ye, Yu Lan or Da-Gang Yu.

Ethics declarations

Competing interests

D.-G.Y., Y.-X.J., T.-Y.G., L.-L.L., W.Z., L.S. and J.-H.Y. have applied for a Chinese patent (202210655523.4) relating to this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Juan Alegre-Requena and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, references, Figs. 1–12 and Tables 1–3.

Supplementary Data 1

Crystallographic data for compound 2z (CCDC reference 2223857).

Supplementary Data 2

Crystallographic data for compound 6e (CCDC reference 2219986).

Supplementary Data 3

Crystallographic data for compound 6f (CCDC reference 2268054).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YX., Liao, LL., Gao, TY. et al. Visible-light-driven synthesis of N-heteroaromatic carboxylic acids by thiolate-catalysed carboxylation of C(sp²)–H bonds using CO2. Nat. Synth 3, 394–405 (2024). https://doi.org/10.1038/s44160-023-00465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00465-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing