Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biocatalytic, stereoconvergent alkylation of (Z/E)-trisubstituted silyl enol ethers

Abstract

The selective conversion of mixtures of Z/E alkenes into chiral products is a synthetic challenge. Biocatalytic strategies can transform isomeric alkenes into stereopure compounds, but enzymes typically convert only one alkene isomer, limiting the overall yield. Additional strategies have been used to interconvert alkene isomers, often at the cost of increasing energy consumption and chemical waste. Here we present engineered haemoproteins derived from a bacterial cytochrome P450 that efficiently catalyse α-carbonyl alkylation of isomeric silyl enol ethers, producing stereopure products. Through screening and directed evolution, we generated P450BM3 variant P411-SCA-5188, which catalyses stereoconvergent carbene transfer in Escherichia coli with high efficiency and stereoselectivity to various Z/E mixtures of silyl enol ethers. In contrast to established stereospecific transformations that leave one isomer unreacted, P411-SCA-5188 converts both isomers to a stereopure product. This biocatalytic approach simplifies the synthesis of chiral α-branched ketones by eliminating the need for stoichiometric chiral auxiliaries, strongly basic alkali-metal enolates and harsh conditions, delivering products with high efficiency and excellent chemo- and stereoselectivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biotransformations of Z/E alkene mixtures.
Fig. 2: Directed evolution for stereoconvergent alkylation.
Fig. 3: Mechanistic studies of stereoconvergent enzymatic alkylation.
Fig. 4: Molecular dynamics simulations.

Similar content being viewed by others

Data availability

The original materials and data that support the findings of this study are available within the paper and its Supplementary Information.

References

  1. Straathof, A. J., Panke, S. & Schmid, A. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 13, 548–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Schoemaker, H. E., Mink, D. & Wubbolts, M. G. Dispelling the myths—biocatalysis in industrial synthesis. Science 299, 1694–1697 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Nestl, B. M., Nebel, B. A. & Hauer, B. Recent progress in industrial biocatalysis. Curr. Opin. Chem. Biol. 15, 187–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. T. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60, 88–119 (2021).

    Article  CAS  Google Scholar 

  5. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 46 (2021).

    Article  CAS  Google Scholar 

  6. Patel, R. N. Biocatalysis for synthesis of pharmaceuticals. Bioorg. Med. Chem. 26, 1252–1274 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, S., Zhou, Y. & Li, Z. Biocatalytic selective functionalisation of alkenes via single-step and onepot multi-step reactions. Chem. Commun. 55, 883–896 (2019).

    Article  CAS  Google Scholar 

  8. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: sereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    Article  CAS  Google Scholar 

  10. Rodriguez-Ruiz, V. et al. Recent developments in alkene hydro-functionalisation promoted by homogeneous catalysts based on earth abundant elements: formation of C–N, C–O and C–P bond. Dalton Trans. 44, 12029–12059 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Coombs, J. R. & Morken, J. P. Catalytic enantioselective functionalization of unactivated terminal alkenes. Angew. Chem. Int. Ed. 55, 2636–2649 (2016).

    Article  CAS  Google Scholar 

  12. Yanto, Y. et al. Asymmetric bioreduction of alkenes using ene-teductases YersER and KYE1 and effects of organic solvents. Org. Lett. 13, 2540–2543 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, L.-C., Deng, H. & Renata, H. Recent progress and developments in chemoenzymatic and biocatalytic dynamic kinetic resolution. Org. Process Res. Dev. 26, 1925–1943 (2022).

    Article  CAS  Google Scholar 

  14. Demming, R. M. et al. Asymmetric enzymatic hydration of unactivated, aliphatic alkenes. Angew. Chem. Int. Ed. 58, 173–177 (2019).

    Article  CAS  Google Scholar 

  15. Stueckler, C. et al. Stereocomplementary bioreduction of α,β-unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme- and substrate-based stereocontrol. Org. Lett. 9, 5409–5411 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, S. et al. Enantioselective trans-dihydroxylation of aryl olefins by cascade biocatalysis with recombinant Escherichia coli coexpressing monooxygenase and epoxide hydrolase. ACS Catal. 4, 409–420 (2014).

    Article  CAS  Google Scholar 

  17. Williams, J. M. J. Preparation of Alkenes: A Practical Approach (Oxford Univ. Press, 1996).

    Book  Google Scholar 

  18. Nevesely, T., Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the EZ isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Litman, Z. C., Wang, Y., Zhao, H. & Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560, 355–359 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Mohr, J. T., Moore, J. T. & Stoltz, B. M. Enantioconvergent catalysis. Beilstein J. Org. Chem. 12, 2038–2045 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kroutil, W., Mischitz, M. & Faber, K. Deracemization of (±)-2,3-disubstituted oxiranes via biocatalytic hydrolysis using bacterial epoxide hydrolases: kinetics of an enantioconvergent process. J. Chem. Soc., Perkin Trans. 1, 3629–3636 (1997).

    Article  Google Scholar 

  23. Chiappe, C. et al. Biocatalysis in ionic liquids: the stereoconvergent hydrolysis of trans-β-methylstyrene oxide catalyzed by soluble epoxide hydrolase. J. Mol. Catal. B: Enzym. 27, 243–248 (2004).

    Article  CAS  Google Scholar 

  24. Yang, Y., Cho, I., Qi, X., Liu, P. & Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nat. Chem. 11, 987–993 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mao, R. et al. Enantio- and diastereoenriched enzymatic synthesis of 1,2,3-polysubstituted cyclopropanes from (Z/E)-trisubstituted enol acetates. J. Am. Chem. Soc. 145, 16176–16185 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carreira, E. M. & Kvaerno, L. in Classics in Stereoselective Synthesis, Chapter 3: α-Functionalization of Enolates, 69–102 (Wiley-VCH, 2009).

  27. Dugger, R. W., Ragan, J. A. & Ripin, D. H. B. Survey of GMP bulk reactions run in a research facility between 1985 and 2002. Org. Process Res. Dev. 9, 253–258 (2005).

    Article  CAS  Google Scholar 

  28. Wright, T. B. & Evans, P. A. Catalytic enantioselective alkylation of prochiral enolates. Chem. Rev. 121, 9196–9242 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Evans, D. A., Ennis, M. D. & Mathre, D. J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α-substituted carboxylic acid derivatives. J. Am. Chem. Soc. 104, 1737–1739 (1982).

    Article  CAS  Google Scholar 

  30. Myers, A. G., Yang, B. H., Chen, H. & Gleason, J. L. Use of pseudoephedrine as a practical chiral auxiliary for asymmetric synthesis. J. Am. Chem. Soc. 116, 9361–9362 (1994).

    Article  CAS  Google Scholar 

  31. Sruthi, P. R. & Anas, S. An overview of synthetic modification of nitrile group in polymers and applications. J. Polym. Sci. 58, 1039–1061 (2020).

    Article  CAS  Google Scholar 

  32. Wang, X. et al. Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. RSC Med. Chem. 12, 1650–1671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support by the National Science Foundation Division of Molecular and Cellular Biosciences (MCB-2016137 to F.H.A.) is gratefully acknowledged. R.M. acknowledges support from the Swiss National Science Foundation (SNSF) Early Mobility Postdoctoral Fellowship (P2ELP2_195118). D.J.W. acknowledges support from the National Science Foundation Graduate Research Fellowship (DGE-1745301). K.M.S. acknowledges support from NIH Ruth L. Kirschstein National Research Service Award (1F32GM145123-01A1). Support by the National Science Foundation Division of Chemistry (CHE-2153972 to K.N.H.) and the Alexander von Humboldt Foundation (Feodor Lynen Fellowship, T.R.) is gratefully acknowledged. We thank S. C. Virgil for the maintenance of the Caltech Center for Catalysis and Chemical Synthesis (3CS). We thank M. Shahgoli for mass spectrometry assistance. We thank D. VanderVelde for the maintenance of the Caltech NMR facility. We also thank S. Brinkmann-Chen for the helpful discussions and comments on the manuscript. Calculations were performed on the Hoffman2 cluster at the University of California, Los Angeles.

Author information

Authors and Affiliations

Authors

Contributions

R.M. conceptualized and designed the overall project under the guidance of F.H.A. R.M. and D.J.W. conducted the initial screening of haem proteins. D.M.T. performed the directed evolution experiments, with support from S.J.W. R.M. and D.J.W. investigated the substrate scope and reaction mechanism. K.M.S. purified and obtained both (Z)-1a and (E)-1a. T.R. carried out the computational studies with K.N.H. providing guidance. R.M. and F.H.A. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Frances H. Arnold.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 2

Source data for Fig. 2b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, R., Taylor, D.M., Wackelin, D.J. et al. Biocatalytic, stereoconvergent alkylation of (Z/E)-trisubstituted silyl enol ethers. Nat. Synth 3, 256–264 (2024). https://doi.org/10.1038/s44160-023-00431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00431-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing