Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biocatalytic enantioselective γ-C–H lactonization of aliphatic carboxylic acids

Abstract

Enantioselective γ-lactonization of unactivated C(sp3)–H bonds of aliphatic carboxylic acids is a synthetic challenge. Without using directing groups, chemical methods largely capitalize on the innate bias of dissimilar C–H bonds and are therefore challenging for flexible linear substrates with identical methylenes. Here we report the use of a fatty acid hydroxylase, P450BSβ, repurposed through directed evolution, for the catalytic oxidative γ-lactonization of aliphatic carboxylic acids in an enantioselective fashion. The biocatalytic reaction uses inexpensive and eco-friendly oxidant, H2O2, at room temperature and forms γ-lactones in 2 h with excellent atom and step economy. This scalable process is tolerant of a range of functional groups, including (hetero)aryl substituents and aliphatic substrates with differing chain lengths. The introduced mutations result in a substrate conformation that prefers γ-regioselectivity with pro-(S)-H abstraction, which is supported by X-ray crystallographic analysis of the evolved hydroxylase variant in complex with palmitoleic acid and further computational studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosynthesis of γ-lactones and their synthetic strategies via direct C–H lactonization.
Fig. 2: Directed evolution of P450BSβ for γ-lactonization.
Fig. 3: Product applications.
Fig. 4: Structural basis of the regio- and enantioselectivity of the evolved enzyme.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information. The crystal structure of P450BSβ-L78G/Q85F/F173S/G290I in complex with palmitoleic acid reported in this study has been deposited in the PDB under accession code 8HKD. Previously published crystal structures of wild-type P450BSβ (ref. 28) and P450BSβ-L78I/Q85H/G290I (ref. 27) can be accessed from the PDB with accession codes 1IZO and 7WYG, respectively. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2272143 (22), 2272144 (40) and 2255877 (42). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures.

References

  1. Sartori, S. K., Diaz, M. A. N. & Diaz-Muñoz, G. Lactones: classification, synthesis, biological activities, and industrial applications. Tetrahedron 84, 132001–132039 (2021).

    Article  CAS  Google Scholar 

  2. Schulz, S. & Hötling, S. The use of the lactone motif in chemical communication. Nat. Prod. Rep. 32, 1042–1066 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Braga, A., Guerreiro, C. & Belo, I. Generation of flavors and fragrances through biotransformation and de novo synthesis. Food Bioproc. Tech. 11, 2217–2228 (2018).

    Article  Google Scholar 

  4. Silva, R., Coelho, E., Aguiar, T. Q. & Domingues, L. Microbial biosynthesis of lactones: gaps and opportunities towards sustainable production. Appl. Sci. 11, 8500 (2021).

    Article  CAS  Google Scholar 

  5. Kao, L.-C. & Sen, A. Platinum(II) catalysed selective remote oxidation of unactivated C–H bonds in aliphatic carboxylic acids. J. Chem. Soc., Chem. Commun. 18, 1242–1243 (1991).

    Article  Google Scholar 

  6. Nikishin, G. I., Svitanko, I. V. & Troyansky, E. I. Direct oxidation of alkanoic acids and their amides to γ-lactones by peroxydisulphate-containing systems. J. Chem. Soc. Perkin Trans. II 5, 595–601 (1983).

    Article  Google Scholar 

  7. Richers, J., Heilmann, M., Drees, M. & Tiefenbacher, K. Synthesis of lactones via C−H functionalization of nonactivated C(sp3)−H bonds. Org. Lett. 18, 6472–6475 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    Article  CAS  Google Scholar 

  9. Bigi, M. A., Reed, S. A. & White, M. C. Directed metal (oxo) aliphatic C–H hydroxylations: overriding substrate bias. J. Am. Chem. Soc. 134, 9721–9726 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Cianfanelli, M. et al. Enantioselective C–H lactonization of unactivated methylenes directed by carboxylic acids. J. Am. Chem. Soc. 142, 1584–1593 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Call, A. et al. Carboxylic acid directed γ-lactonization of unactivated primary C–H bonds catalyzed by Mn complexes: application to stereoselective natural product diversification. J. Am. Chem. Soc. 144, 19542–19558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan, H. S. S., Yang, J.-M. & Yu, J.-Q. Catalyst-controlled site-selective methylene C–H lactonization of dicarboxylic acids. Science 376, 1481–1487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, R. K., Huang, X. & Arnold, F. H. Selective C–H bond functionalization with engineered heme proteins: new tools to generate complexity. Curr. Opin. Chem. Biol. 49, 67–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren, X. & Fasan, R. Engineered and artificial metalloenzymes for selective C–H functionalization. Curr. Opin. Green. Sust. 31, 100494 (2021).

    Article  CAS  Google Scholar 

  16. Romero, E. et al. Enzymatic late-stage modifications: better late than never. Angew. Chem. Int. Ed. 60, 16824–16855 (2021).

    Article  CAS  Google Scholar 

  17. Hammerer, L., Winkler, C. K. & Kroutil, W. Regioselective biocatalytic hydroxylation of fatty acids by cytochrome P450s. Catal. Lett. 148, 787–812 (2018).

    Article  CAS  Google Scholar 

  18. Amaya, J. A., Rutland, C. D. & Makris, T. M. Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi. J. Inorg. Biochem. 158, 11–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao, H., Bao, Z. & Zhao, H. High throughput screening and selection methods for directed enzyme evolution. Ind. Eng. Chem. Res. 54, 4011–4020 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Fasan, R., Kan, S. B. J. & Zhao, H. A continuing career in biocatalysis: Frances H. Arnold. ACS Catal. 9, 9775–9788 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y., Yu, X. & Zhao, H. Biosystems design by directed evolution. AlChE J. 66, e16716 (2020).

    Article  CAS  Google Scholar 

  23. Qu, G., Li, A., Acevedo-Rocha, C. G., Sun, Z. & Reetz, M. T. The crucial role of methodology development in directed evolution of selective enzymes. Angew. Chem. Int. Ed. 59, 13204–13231 (2020).

    Article  CAS  Google Scholar 

  24. Marshall, J. R., Mangas-Sanchez, J. & Turner, N. J. Expanding the synthetic scope of biocatalysis by enzyme discovery and protein engineering. Tetrahedron 82, 131926 (2021).

    Article  CAS  Google Scholar 

  25. Miller, D. C., Athavale, S. V. & Arnold, F. H. Combining chemistry and protein engineering for new-to-nature biocatalysis. Nat. Synth. 1, 18–23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reetz, M. T. Witnessing the birth of directed evolution of stereoselective enzymes as catalysts in organic chemistry. Adv. Synth. Catal. 364, 3326–3335 (2022).

    Article  CAS  Google Scholar 

  27. Zhang, K. et al. Biocatalytic enantioselective β-hydroxylation of unactivated C–H bonds in aliphatic carboxylic acids. Angew. Chem. Int. Ed. 61, e202204290 (2022).

    Article  CAS  Google Scholar 

  28. Lee, D.-S. et al. Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J. Biol. Chem. 278, 9761–9767 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, S., Jiang, S., Chen, H., Bai, W.-J. & Wang, X. Directed evolution of a hydroxylase into a decarboxylase for synthesis of 1-alkenes from fatty acids. ACS Catal. 10, 14375–14379 (2020).

    Article  Google Scholar 

  30. Shoji, O. et al. Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSβ. Angew. Chem. Int. Ed. 46, 3656–3659 (2007).

    Article  CAS  Google Scholar 

  31. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Mosandl, A. & Gȕenther, C. Stereoisomeric flavor compounds. 20. Structure and properties of γ-lactone enantiomers. J. Agric. Food Chem. 37, 413–418 (1989).

    Article  CAS  Google Scholar 

  33. Wheeler, J. W., Happ, G. M., Araujo, J. & Pasteels, J. M. γ-Dodecalactone from rove beetles. Tetrahedron Lett. 46, 4635–4638 (1972).

    Article  Google Scholar 

  34. Ma, C. et al. Anti-tuberculosis constituents from the stem bark of Micromelum hirsutum. Planta Med. 71, 261–267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsumoto, K., Usuda, K., Okabe, H., Hashimoto, M. & Shimada, Y. Synthesis of optically active heterocyclic compounds via deracemization of 1,2-diol monotosylate derivatives bearing a long aliphatic chain by a combination of enzymatic hydrolysis with Mitsunobu inversion. Tetrahedron: Asymmetry 24, 108–115 (2013).

    Article  CAS  Google Scholar 

  36. Shibata, C. & Mori, K. Synthesis of (4R,9Z)-9-octadecen-4-olide, the female sex pheromone of Janus integer, and its enantiomer. Eur. J. Org. Chem. 2004, 1083–1088 (2004).

    Article  Google Scholar 

  37. Machara, A. et al. Identification and enantiodivergent synthesis of (5Z,9S)-tetradec-5-en-9-olide, a queen-specific volatile of the termite Silvestritermes minutus. J. Nat. Prod. 81, 2266–2274 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Reinhard, F. G. C., Lin, Y.-T., Stańczak, A. & de Visser, S. P. Bioengineering of cytochrome P450 OleTJE: how does substrate positioning affect the product distributions? Molecules 25, 2675 (2020).

    Article  PubMed  Google Scholar 

  39. Chowdhury, A. S., Ali, H. S., Faponle, A. S. & de Visser, S. P. How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleTJE. Phys. Chem. Chem. Phys. 22, 27178–27190 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Ramanan, R., Dubey, K. D., Wang, B., Mandal, D. & Shaik, S. Emergence of function in P450-proteins: a combined quantum mechanical/molecular mechanical and molecular dynamics study of the reactive species in the H2O2‑dependent cytochrome P450SPα and its regio- and enantioselective hydroxylation of fatty acids. J. Am. Chem. Soc. 138, 6786–6797 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Schlichting, I. et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Core Facility Center for Life Sciences, USTC, for assistance during X-ray data collection, and F. Shen (Fudan University) for technical assistance. This work is financially supported by the National Natural Science Foundation of China (grant no. 32171410 to X.W.) and the Natural Science Foundation of Anhui Province (grant no. 2008085 to C.H.).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and W.-J.B. conceived and designed the project. Q.M. and W.S. performed directed evolution and enzymatic experiments and collected the data. X.C., F.L. and C.H. obtained protein crystals and solved the crystal structure. Z.C. obtained the small-molecule crystals and solved the crystal structure. H.X. and J.-L.L. performed computational experiments. Q.M., W.S., X.C., H.X., Z.C., F.L., J.-L.L., C.H., W.-J.B. and X.W. analysed data. X.W. and W.-J.B. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Jie-Lou Liao, Chao He, Wen-Ju Bai or Xiqing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Elaine O’Reilly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Figs. 1–17 and Tables 1–8.

Reporting Summary

Supplementary Data 1

Crystallographic data for compound 22, CCDC 2272143.

Supplementary Data 2

Crystallographic data for compound 40, CCDC 2272144.

Supplementary Data 3

Crystallographic data for compound 42, CCDC 2255877.

Supplementary Data 4

Crystallographic data for P450BSβ-L78G/Q85F/F173S/G290I, PDB accession code 8HKD.

Supplementary Data 5

Primers used in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Shan, W., Chu, X. et al. Biocatalytic enantioselective γ-C–H lactonization of aliphatic carboxylic acids. Nat. Synth 3, 123–130 (2024). https://doi.org/10.1038/s44160-023-00427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00427-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing