Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of branched arabinogalactans up to a 140-mer from Panax notoginseng and their anti-pancreatic-cancer activity

A Publisher Correction to this article was published on 24 November 2023

This article has been updated

Abstract

RN1, a highly branched arabinogalactan isolated from the flower of Panax notoginseng, possesses a potent ability to inhibit the development of pancreatic cancer. Due to the structural complexity and heterogeneity of RN1, it is difficult to extract homogeneous RN1 from natural sources. The structure–activity relationship is ambiguous, particularly the correlation between molecular size and function. We report the total synthesis of the RN1 glycan featuring 140 monosaccharide units via an efficient iterative preactivation-based one-pot glycosylation strategy, providing an intact complex polysaccharide, allowing investigation of its structure–activity relationship. Using this glycosylation strategy, a glycan library comprising nine molecules was constructed, ranging from 5-mer to 140-mer. Finally, all compounds in the library were screened for anti-pancreatic-cancer activity via detection of cell proliferation, apoptosis and cell cycle. The active structural domain of RN1 was revealed to be a decasaccharide fragment that exhibited superior performance compared to gemcitabine, a frequently used anti-pancreatic-cancer drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of highly branched arabinogalactan RN1 and the retrosynthetic analysis by an iterative preactivation-based one-pot glycan assembly protocol.
Fig. 2: Synthesis of two repeating 10-mer units.
Fig. 3: Synthesis of 40-mer donor 2 and 100-mer acceptor 3.
Fig. 4: Assembly of protected 140-mer 26 and its full deprotection to 1 (RN1).
Fig. 5: Synthesis of a glycan library ranging from 5-mer to 70-mer.
Fig. 6: Structural characterization of protected and deprotected glycans.
Fig. 7: Anti-pancreatic-cancer activity evaluation of synthetic glycans.

Similar content being viewed by others

Data availability

All data supporting the results and conclusions are available within the article and its Supplementary Information. Synthetic experimental procedures, compound characterization, NMR and mass spectrometer results are available in the Supplementary Information. Requests for materials should be addressed to X.-S.Y. Source data are provided with this paper.

Change history

References

  1. Zhou, Y., Chen, X., Chen, T. & Chen, X. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends Food Sci. Technol. 123, 264–280 (2022).

    Article  CAS  Google Scholar 

  2. Ahmad, M. M. Recent trends in chemical modification and antioxidant activities of plant-based polysaccharides: A review. Carbohydr. Polym. Technol. Appl. 2, 100045 (2021).

    CAS  Google Scholar 

  3. Zhu, K. et al. A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia. Int. J. Biol. Macromol. 57, 142–150 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Yin, M., Zhang, Y. & Li, H. Advances in research on immunoregulation of macrophages by plant polysaccharides. Front. Immunol. 10, 145 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Zhang, S. et al. Structure, anti-tumor activity, and potential anti-tumor mechanism of a fungus polysaccharide from Fomes officinalis. Carbohydr. Polym. 295, 119794 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, C. et al. Hierarchical and programmable one-pot synthesis of oligosaccharides. Nat. Commun. 9, 5202 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Zhang, Z. et al. Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 121, 734–753 (1999).

    Article  CAS  Google Scholar 

  8. Zhang, Y. et al. Orthogonal one-pot synthesis of oligosaccharides based on glycosyl ortho-alkynylbenzoates. Org. Lett. 21, 2335–2339 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Plante, O. J., Palmacci, E. R. & Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Naresh, K., Schumacher, F., Hahm, H. S. & Seeberger, P. H. Pushing the limits of automated glycan assembly: synthesis of a 50mer polymannoside. Chem. Commun. 53, 9085–9088 (2017).

    Article  CAS  Google Scholar 

  11. Huang, X., Huang, L., Wang, H. & Ye, X.-S. Iterative one-pot synthesis of oligosaccharides. Angew. Chem. Int. Ed. 43, 5221–5224 (2004).

    Article  CAS  Google Scholar 

  12. Wu, Y., Xiong, D., Chen, S., Wang, Y. & Ye, X.-S. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat. Commun. 8, 14851 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Yao, W. et al. Automated solution-phase multiplicative synthesis of complex glycans up to a 1,080-mer. Nat. Synth. 1, 854–863 (2022).

    Article  ADS  Google Scholar 

  14. Qin, X. & Ye, X.-S. Donor preactivation-based glycosylation: an efficient strategy for glycan synthesis. Chin. J. Chem. 39, 531–542 (2021).

    Article  CAS  Google Scholar 

  15. Hansen, S. U., Miller, G. J., Cliff, M. J., Jayson, G. C. & Gardiner, J. M. Making the longest sugars: a chemical synthesis of heparin-related [4]n oligosaccharides from 16-mer to 40-mer. Chem. Sci. 6, 6158–6164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Islam, M., Shinde, G. P. & Hotha, S. Expedient synthesis of the heneicosasaccharyl mannose capped arabinomannan of the Mycobacterium tuberculosis cellular envelope by glycosyl carbonate donors. Chem. Sci. 8, 2033–2038 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Joseph, A. A., Pardo-Vargas, A. & Seeberger, P. H. Total synthesis of polysaccharides by automated glycan assembly. J. Am. Chem. Soc. 142, 8561–8564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu, Q. et al. Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat. Commun. 11, 4142 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Wang, T. et al. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J. Ethnopharmacol. 188, 234–258 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, J. H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J. Ginseng Res. 42, 264–269 (2018).

    Article  PubMed  Google Scholar 

  21. Wang, P. et al. An arabinogalactan from flowers of Panax notoginseng inhibits angiogenesis by BMP2/Smad/Id1 signaling. Carbohydr. Polym. 121, 328–335 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, L. et al. RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivo via blocking galectin-3 associated signaling pathways. Oncogene 36, 1297–1308 (2017).

    Article  PubMed  Google Scholar 

  23. Cai, D. et al. A concise synthesis of three branches derived from polysaccharide RN1 and anti-pancreatic cancer activity study. Polymers 9, 546 (2017).

    Article  Google Scholar 

  24. Hu, C. et al. Convergent synthesis and anti-pancreatic cancer cell growth activity of a highly branched heptadecasaccharide from Carthamus tinctorius. Angew. Chem. Int. Ed. 61, e202202554 (2022).

    Article  CAS  ADS  Google Scholar 

  25. Wang, S., Yang, Y., Zhu, Q., Lin, G. Q. & Yu, B. Chemical synthesis of polysaccharides. Curr. Opin. Chem. Biol. 69, 102154 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Z., Zhou, L., El-Boubbou, K., Ye, X. & Huang, X. Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors. J. Org. Chem. 72, 6409–6420 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, D., Xiong, D. & Ye, X.-S. A five-component one-pot synthesis of phosphatidylinositol pentamannoside (PIM5). Chin. Chem. Lett. 29, 1340–1342 (2018).

    Article  CAS  Google Scholar 

  28. Li, Z. & Gildersleeve, J. C. Mechanistic studies and methods to prevent aglycon transfer of thioglycosides. J. Am. Chem. Soc. 128, 11612–11619 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Gu, G., Du, Y., Hu, H. & Jin, C. Synthesis of 2-chloro-4-nitrophenyl α-L-fucopyranoside: a substrate for α-L-fucosidase (AFU). Carbohydr. Res. 338, 1603–1607 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Veeneman, G. H., Van Leeuwen, S. H. & Van Boom, J. H. Iodonium promoted reactions at anomeric center II. An efficient thioglycoside mediated approach toward the formation of 1,2-trans linked glycosides and glycosidic esters. Tetrahedron Lett. 31, 1331–1334 (1990).

    Article  CAS  Google Scholar 

  31. Konradsson, P., Udodong, U. E. & Fraser-Reid, B. Iodonium promoted reactions of disarmed thioglycosides. Tetrahedron Lett. 31, 4313–4316 (1990).

    Article  CAS  Google Scholar 

  32. Codée, J. D. C. et al. Ph2SO/Tf2O: a powerful promotor system in chemoselective glycosylations using thioglycosides. Org. Lett. 5, 1519–1522 (2003).

    Article  PubMed  Google Scholar 

  33. Crich, D. & Smith, M. 1-Benzenesulfinyl piperidine/trifluoromethanesulfonic anhydride: a potent combination of shelf-stable reagents for the low-temperature conversion of thioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages. J. Am. Chem. Soc. 123, 9015–9020 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, C., Wang, H., Huang, X., Zhang, L.-H. & Ye, X.-S. Benzenesulfinyl morpholine: a new promoter for one-pot oligosaccharide synthesis using thioglycosides by pre-activation strategy. Synlett 2006, 2846–2850 (2006).

    Article  Google Scholar 

  35. Ren, C., Tsai, Y., Yang, Y., Zou, W. & Wu, S. Synthesis of a tetrasaccharide glycosyl glycerol. Precursor to glycolipids of meiothermus taiwanensis ATCC BAA-400. J. Org. Chem. 72, 5427–5430 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Yamazaki, K., Inukai, K., Suzuki, M., Kuga, H. & Korenaga, H. Structural studies on a sulfated polysaccharide from an Arthrobacter sp. by NMR spectroscopy and methylation analysis. Carbohydr. Res. 305, 253–260 (1998).

    Article  Google Scholar 

  37. Du, Y., Zhang, M., Yang, F. & Gu, G. A simple access to 3,6-branched oligosaccharides: Synthesis of a glycopeptide derivative that relates to Lycium barbarum L. J. Chem. Soc., Perkin trans. 1, 3122–3127 (2001).

    Article  Google Scholar 

  38. Tanaka, M., Takahashi, D. & Toshima, K. 1,2-cis-α-stereoselective glycosylation utilizing a glycosyl-acceptor-derived borinic ester and its application to the total synthesis of natural glycosphingolipids. Org. Lett. 18, 5030–5033 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Sabbavarapu, N. M. & Seeberger, P. H. Automated glycan assembly of highly branched heptadecasaccharide repeating unit of arabinogalactan polysaccharide HH1-1 from Carthamus tinctorius. Chem. Commun. 59, 4822–4824 (2023).

    Article  CAS  Google Scholar 

  40. Zhu, X., Kawatkar, S., Rao, Y. & Boons, G. J. Practical approach for the stereoselective introduction of α-arabinofuranosides. J. Am. Chem. Soc. 128, 11948–11957 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. D’Sauza, F. W. & Lowary, T. L. The first total synthesis of a highly branched arabinofuranosyl hexasaccharide found at the nonreducing termini of mycobacterial arabinogalactan and lipoarabinomannan. Org. Lett. 2, 1493–1495 (2000).

    Article  Google Scholar 

  42. Ishiwata, A., Akao, H. & Ito, Y. Stereoselective synthesis of a fragment of mycobacterial arabinan. Org. Lett. 8, 5525–5528 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Imamura, A. & Lowary, T. L. β-selective arabinofuranosylation using a 2,3-O-xylylene-protected donor. Org. Lett. 12, 3686–3689 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Thadke, S. A., Mishra, B. & Hotha, S. Facile synthesis of β- and α-arabinofuranosides and application to cell wall motifs of M. tuberculosis. Org. Lett. 15, 2466–2469 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Q., Bin, H. & Yang, J. β-arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors. Org. Lett. 15, 3974–3977 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Natural Science Foundation of China (22237001, 81821004), the National Key Research and Development Program of China (2022YFC3400800) and the Beijing Outstanding Young Scientist Program (BJJWZYJH01201910001001). We thank Q. Li, F. Liu, L. Zhong, X. Shi, X. Liu, W. Zhou and S. Di at Peking University for their helpful assistance in analysis of glycan structures. We thank C. Ju at the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, for her assistance in analysis of biological results. We thank K. Ding at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, for his discussion about the structure of RN1.

Author information

Authors and Affiliations

Authors

Contributions

X.-S.Y. conceived the research. X.Q. and X.-S.Y. designed the experiments. X.Q. performed most of the synthetic experiments. X.Q., C.X. and J.M. performed biological evaluation experiments. M.L., F.Z., W.Y., Y.D., T.X., S.S. and D.S. synthesized some monosaccharide and disaccharide building blocks. X.Q. and X.-S.Y. analysed the data. X.Q. and X.-S.Y. wrote the manuscript. X.-S.Y. supervised the project.

Corresponding author

Correspondence to Xin-Shan Ye.

Ethics declarations

Competing interests

X.-S.Y. and X.Q. are applying for a Chinese patent filed by Peking University. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Kan Ding, Chi-Huey Wong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General Methods and Materials (pages 2–3); Experimental Procedures and Characterization of Compounds (Supplementary Schemes 1–13 and Tables 1–4); Construction of Glycan Library (Supplementary Schemes 14–18 and Table 5); Structural Characterization (Supplementary Figs. 1–4); NMR and Mass Spectra (pages 89–366); Repeating units of RN1 (Supplementary Fig. 5, page 370).

Reporting Summary

Source data

Source Data Fig. 7

Unprocessed optical density value for the viability test and unprocessed cell cycle results.

Source Data Fig. 7

Unprocessed cell apoptosis and cell cycle results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Xu, C., Liu, M. et al. Synthesis of branched arabinogalactans up to a 140-mer from Panax notoginseng and their anti-pancreatic-cancer activity. Nat. Synth 3, 245–255 (2024). https://doi.org/10.1038/s44160-023-00428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00428-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research