Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transition-metal-free C(sp2)–C(sp3) cross-coupling of α-(pseudo)halo aliphatic ketones with boronic acids via a 1,4-metallate shift

Abstract

Suzuki-type cross-coupling is one of the most common strategies for the construction of C–C bonds. Despite great progress on the preparation of C(sp2)–C(sp2) bonds, C(sp2)–C(sp3) cross-coupling with aliphatic halides remains rare, especially with tertiary aliphatic halides and under transition-metal-free conditions. Here we report an efficient C(sp2)–C(sp3) cross-coupling between α-(pseudo)halo aliphatic ketones and arylboronic acids via a 1,4-metallate shift. The α-arylated ketones obtained from this protocol under transition-metal-free and additive-free conditions in the presence of base are formed when the key intermediate enolate traps the arylboronic acid, leading to a tetracoordinate boron intermediate. A subsequent 1,4-metallate shift affords the Suzuki-type coupling products. This strategy provides a practical, scalable and operationally straightforward method for the synthesis of C(sp2)–C(sp3) bonds, and is compatible with challenging tertiary aliphatic halides, allowing for the preparation of 1,3-disubstituted target products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Previous work on Suzuki–Miyaura cross-couplings and our strategy.
Fig. 2: Downstream applications and transformations.
Fig. 3: Scale-up and control experiments.
Fig. 4: Calculated free-energy profiles for the α-arylation of chlorocyclohexanone.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information files. The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2085418 (3a). The data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/datarequest/cif.

References

  1. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    CAS  Google Scholar 

  2. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    CAS  Google Scholar 

  3. Deng, Q., Zheng, Q., Zuo, B. & Tu, T. Robust NHC-palladacycles-catalyzed Suzuki–Miyaura cross-coupling of amides via C–N activation. Green Synth. Catal. 1, 75–78 (2020).

    Google Scholar 

  4. Huang, W., Han, M.-L., Liu, Y.-W., Xu, H. & Dai, H.-X. Palladium-catalyzed diarylative dearomatization of indoles with aryl thioesters. Chin. Chem. Lett. 32, 2765–2768 (2021).

    CAS  Google Scholar 

  5. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Swift, E. C. & Jarvo, E. R. Asymmetric transition metal-catalyzed cross-coupling reactions for the construction of tertiary stereocenters. Tetrahedron. 69, 5799–5817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, C., Chen, T., Li, B., Xiao, G. & Tang, W. Efficient synthesis of sterically hindered arenes bearing acyclic secondary alkyl groups by Suzuki–Miyaura cross-couplings. Angew. Chem. Int. Ed. 54, 3792–3796 (2015).

    CAS  Google Scholar 

  8. Li, C. et al. Sterically demanding aryl–alkyl Suzuki–Miyaura coupling. Org. Chem. Front. 1, 225–229 (2014).

    CAS  Google Scholar 

  9. McCarty, B. J. & Tang, W. A dancing nickel in asymmetric catalysis: enantioselective synthesis of boronic esters by 1,1-addition to terminal alkenes. Green Synth. Catal. 2, 1–3 (2021).

    Google Scholar 

  10. Wu, L., Yang, G. & Zhang, W. Ni-catalyzed enantioconvergent coupling of epoxides with alkenylboronic acids: construction of oxindoles bearing quaternary carbons. CCS Chem. 2, 623–631 (2020).

    CAS  Google Scholar 

  11. Tian, J., Li, W., Li, R., He, L. & Lv, H. Nickel-catalyzed asymmetric arylative cyclization of N-alkynones: efficient access to 1,2,3,6-tetrahydropyridines with a tertiary alcohol. Chin. Chem. Lett. 32, 4038–4040 (2021).

    CAS  Google Scholar 

  12. Yao, L. et al. Visible-light-induced chemoselective reactions of quinoxalin-2(1H)-ones with alkylboronic acids under air/N2 atmosphere. Chin. Chem. Lett. 32, 4033–4037 (2021).

    CAS  Google Scholar 

  13. Li, C. et al. Transition-metal-free stereospecific cross-coupling with alkenylboronic acids as nucleophiles. J. Am. Chem. Soc. 138, 10774–10777 (2016).

    CAS  PubMed  Google Scholar 

  14. Frisch, A. C. & Beller, M. Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Ed. 44, 674–688 (2015).

    Google Scholar 

  15. Kambe, N., Iwasaki, T. & Terao, J. Pd-catalyzed cross-coupling reactions of alkyl halides. Chem. Soc. Rev. 40, 4937–4947 (2011).

    CAS  PubMed  Google Scholar 

  16. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sang, R., Noble, A. & Aggarwal, V. K. Chiral benzothiophene synthesis via enantiospecific coupling of benzothiophene S-oxides with boronic esters. Angew. Chem., Int. Ed. 60, 25313–25317 (2021).

    CAS  Google Scholar 

  18. Hari, D. P., Madhavachary, R., Fasano, V., Haire, J. & Aggarwal, V. K. Highly diastereoselective strain-increase allylborations: rapid access to alkylidenecyclopropanes and alkylidenecyclobutanes. J. Am. Chem. Soc. 143, 7462–7470 (2021).

    CAS  PubMed  Google Scholar 

  19. Bennett, S. H. et al. Difunctionalization of C–C σ-bonds enabled by the reaction of bicyclo[1.1.0]butyl boronate complexes with electrophiles: reaction development, scope, and stereochemical origins. J. Am. Chem. Soc. 142, 16766–16775 (2020).

    CAS  PubMed  Google Scholar 

  20. Mega, R. S., Duong, V. K., Noble, A. & Aggarwal, V. K. Decarboxylative conjunctive cross-coupling of vinyl boronic esters using metallaphotoredox catalysis. Angew. Chem. Int. Ed. 59, 4375–4379 (2020).

    CAS  Google Scholar 

  21. Stymiest, J. L., Bagutski, V., French, R. M. & Aggarwal, V. K. Enantiodivergent conversion of chiral secondary alcohols into tertiary alcohols. Nature 456, 778–782 (2008).

    CAS  Google Scholar 

  22. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao, Q. et al. Transition-metal-free electrophilic amination of arylboroxines. Org. Lett. 14, 4230–4233 (2012).

    CAS  PubMed  Google Scholar 

  24. Wu, G., Deng, Y., Wu, C., Zhang, Y. & Wang, J. Synthesis of α-aryl esters and nitriles: deaminative coupling of α-aminoesters and α-aminoacetonitriles with arylboronic acids. Angew. Chem. Int. Ed. 53, 10510–10514 (2014).

    CAS  Google Scholar 

  25. Li, H. et al. Formal carbon insertion of N-tosylhydrazone into B–B and B–Si bonds: gem-diborylation and gem-silylborylation of sp3 carbon. Org. Lett. 16, 448–451 (2014).

    CAS  PubMed  Google Scholar 

  26. Petasis, N. A. & Akritopoulou, I. The boronic acid Mannich reaction: a new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett. 34, 583–586 (1993).

    CAS  Google Scholar 

  27. Jiang, Y. & Schaus, S. E. Asymmetric petasis borono-Mannich allylation reactions catalyzed by chiral biphenols. Angew. Chem. Int. Ed. 56, 1544–1548 (2017).

    CAS  Google Scholar 

  28. Hu, Y. et al. Stereoselective synthesis of trisubstituted vinylboronates from ketone enolates triggered by 1,3-metalate rearrangement of lithium enolates. Angew. Chem. Int. Ed. 58, 15813–15818 (2019).

    CAS  Google Scholar 

  29. Roscales, S. & Csáky, A. G. Synthesis of ketones by C–H functionalization of aldehydes with boronic acids under transition-metal-free conditions. Angew. Chem. Int. Ed. 60, 8728–8732 (2021).

    CAS  Google Scholar 

  30. Petasis, N. A. & Zavialov, I. A. A new and practical synthesis of α-amino acids from alkenyl boronic acids. J. Am. Chem. Soc. 119, 445–446 (1997).

    CAS  Google Scholar 

  31. Tian, D. et al. Stereospecific nucleophilic substitution with arylboronic acids as nucleophiles in the presence of a CONH group. Angew. Chem. Int. Ed. 57, 7176–7180 (2018).

    CAS  Google Scholar 

  32. Ming, W. et al. Concise synthesis of α-amino cyclic boronates via multicomponent coupling of salicylaldehydes, amines, and B2(OH)4. Green Chem. 22, 2184–2190 (2020).

    CAS  Google Scholar 

  33. Hirano, K. et al. Nucleophilic diboration strategy targeting diversified 1-boraphenarene architectures. Angew. Chem. Int. Ed. 59, 21448–21453 (2020).

    CAS  Google Scholar 

  34. Mai, S., Li, W., Li, X., Zhao, Y. & Song, Q. Palladium-catalyzed Suzuki–Miyaura coupling of thioureas or thioamides. Nat. Commun. 10, 5709–5721 (2019).

    PubMed Central  Google Scholar 

  35. Yang, K. et al. Construction of axially chiral arylborons via atroposelective Miyaura borylation. J. Am. Chem. Soc. 143, 10048–10053 (2021).

    CAS  PubMed  Google Scholar 

  36. Wang, S., Xu, J. & Song, Q. Modular synthesis of polysubstituted quinolin-3-amines by oxidative cyclization of 2-(2-isocyanophenyl)acetonitriles with organoboron reagents. Org. Lett. 23, 6789–6794 (2021).

    CAS  PubMed  Google Scholar 

  37. Zhang, F. et al. An olefinic 1,2-α-boryl migration enables 1,2-bis(boronic esters) via radical-polar crossover reaction. Chin. J. Chem. 40, 582–588 (2022).

    CAS  Google Scholar 

  38. Zhu, S., Yan, J. & Song, Q. Pyridinium-catalyzed decarboxylative borylation of benzoyl peroxides. Green Synth. Catal. 2, 299–302 (2021).

    Google Scholar 

  39. Yang, K. et al. Passerini-type reaction of boronic acids enables α-hydroxyketones synthesis. Nat. Commun. 12, 441–450 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, K., Zhang, F., Fang, T., Zhang, G. & Song, Q. Stereospecific 1,4-metallate shift enables stereoconvergent synthesis of ketoximes. Angew. Chem. Int. Ed. 58, 13421–13426 (2019).

    CAS  Google Scholar 

  41. Xu, H., Ye, M., Yang, K. & Song, Q. Regioselective cross-coupling of isatogens with boronic acids to construct 2,2-disubstituted indolin-3-one derivatives. Org. Lett. 23, 7776–7780 (2021).

    CAS  PubMed  Google Scholar 

  42. Li, C. et al. Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nat. Commun. 13, 1784–1795 (2022).

    CAS  PubMed  Google Scholar 

  43. Yang, K. et al. Transition-metal-free double-insertive coupling of isocyanides with arylboronic acids enabled diarylmethanamines. Cell Rep. Phys. Sci. 1, 100268–100243 (2020).

    CAS  Google Scholar 

  44. Ma, X., Su, J. & Song, Q. Unconventional transformations of difluorocarbene with amines and ethers. Acc. Chem. Res. https://doi.org/10.1021/acs.accounts.2c00830 (2023).

    Article  PubMed  Google Scholar 

  45. Li, H., Hughes, R. P. & Wu, J. Dearomative indole (3 + 2) cycloaddition reactions. J. Am. Chem. Soc. 136, 6288–6296 (2014).

    CAS  Google Scholar 

  46. He, Z., Song, F., Sun, H. & Huang, Y. Transition-metal-free Suzuki-type cross-coupling reaction of benzyl halides and boronic acids via 1,2-metallate shift. J. Am. Chem. Soc. 140, 2693–2699 (2018).

    CAS  PubMed  Google Scholar 

  47. Tao, L. et al. Rhodium-catalyzed deoxygenation and borylation of ketones: a combined experimental and theoretical investigation. J. Am. Chem. Soc. 142, 18118–18127 (2020).

    CAS  PubMed  Google Scholar 

  48. Zheng, S.-C., Wang, Q. & Zhu, J. Catalytic kinetic resolution by enantioselective aromatization: conversion of racemic intermediates of the Barton–Zard reaction into enantioenriched 3-arylpyrroles. Angew. Chem. Int. Ed. 58, 9215–9219 (2019).

    CAS  Google Scholar 

  49. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, 2013).

  50. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  51. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Google Scholar 

  52. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS  Google Scholar 

  53. Cossi, M., Barone, V., Cammi, R. & Tomasi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 255, 327–335 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (21931013 and 22271105), the Natural Science Foundation of Fujian Province (2022J02009), the Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University and numerical computations at the Hefei advanced computing centre is gratefully acknowledged. Dedicated to Professor Zhenfeng Xi on the occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Contributions

Q.S. designed and directed the project. X.L. performed the experiments and developed the reactions. Q.Z., H.W. and H.S. helped collecting some of the experimental data. X.L. prepared the Supplementary Information. Y.L. directed the DFT calculations, H.C. performed DFT calculations and drafted the DFT sections. Q.S. and X.L. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Yu Lan or Qiuling Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Figs. 1–184 and Tables 1 and 2.

Supplementary Data 1

Crystallographic data for compound 3a, CCDC 2085418.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, H., Wang, H. et al. Transition-metal-free C(sp2)–C(sp3) cross-coupling of α-(pseudo)halo aliphatic ketones with boronic acids via a 1,4-metallate shift. Nat. Synth 2, 1211–1221 (2023). https://doi.org/10.1038/s44160-023-00373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00373-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing