Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantiocontrolled macrocyclization by encapsulation of substrates in chiral capsules

Abstract

Chiral macrocycles are commonly found in nature and have strong binding affinity to their targets. Thus, the development of efficient macrocyclization strategies is an important goal in the synthetic community. However, macrocyclization with chirality induction remains a great challenge because of the large entropic penalty associated with ring closure while maintaining the chiral conformation. Here, we report a highly efficient chiral macrocyclization with controlling enantioselectivity using a chiral confinement strategy. A linear substrate is encapsulated by a host precursor molecule through the formation of chiral capsule structures, which subsequently self-assemble into a robust two-dimensional structure entrapping the substrate with a folded chiral conformation. Then, the reaction under confinement generates an enantiopure macrocycle product. Furthermore, the chirality of the capsule assembly can switch into an opposite form using sonication, capable of controlling enantioselectivity. The substrate-encapsulating process is amenable to a substrate change, thus enabling diverse chirality induction in macrocycle formation. This macrocyclization method works with substrates decorated with a wide range of functional groups at high levels of precision and efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General concept of capsule formation for chiral macrocyclization.
Fig. 2: Formation of chiral capsule assembly and its chirality switching.
Fig. 3: Chiral macrocyclization of S1 in capsule assembly.
Fig. 4: Adaptability of capsule to substrate changes in size.
Fig. 5: Diverse chiral macrocyclizations in capsule assembly.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Supplementary Information.

References

  1. Heinis, C. Tools and rules for macrocycles. Nat. Chem. Biol. 10, 696–698 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Villar, E. A. et al. How proteins bind macrocycles. Nat. Chem. Biol. 10, 723–731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Segawa, Y. et al. Synthesis of a Möbius carbon nanobelt. Nat. Synth. 1, 535–541 (2022).

    Article  Google Scholar 

  5. Martí-Centelles, V., Pandey, M. D., Burguete, M. I. & Luis, S. V. Macrocyclization reactions: the importance of conformational, configurational, and template-induced preorganization. Chem. Rev. 115, 8736–8834 (2015).

    Article  PubMed  Google Scholar 

  6. Girvin, Z. C., Andrews, M. K., Liu, X. & Gellman, S. H. Foldamer-templated catalysis of macrocycle formation. Science 366, 1528–1531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sytniczuk, A. et al. At long last: olefin metathesis macrocyclization at high concentration. J. Am. Chem. Soc. 140, 8895–8901 (2018).

    Article  CAS  Google Scholar 

  8. O’Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469, 72–75 (2011).

    Article  PubMed  Google Scholar 

  9. Zheng, K. & Hong, R. Stereoconfining macrocyclizations in the total synthesis of natural products. Nat. Prod. Rep. 36, 1546–1575 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Gagnon, C. et al. Biocatalytic synthesis of planar chiral macrocycles. Science 367, 917–921 (2020).

    Article  CAS  Google Scholar 

  11. Mori, K., Ohmori, K. & Suzuki, K. Hydrogen-bond control in axially chiral styrenes: selective synthesis of enantiomerically pure C2-symmetric paracyclophanes. Angew. Chem. Int. Ed. Engl. 48, 5638–5641 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Romanazzi, G., Degennaro, L., Mastrorilli, P. & Luisi, R. Chiral switchable catalysts for dynamic control of enantioselectivity. ACS Catal. 7, 4100–4114 (2017).

    Article  CAS  Google Scholar 

  14. Ojima, I. Catalytic Asymmetric Synthesis (John Wiley & Sons, 2010).

  15. Bierschenk, S. M. et al. Impact of host flexibility on selectivity in a supramolecular host-catalyzed enantioselective aza-Darzens reaction. J. Am. Chem. Soc. 144, 11425–11433 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Nishioka, Y., Yamaguchi, T., Kawano, M. & Fujita, M. Asymmetric [2 + 2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries. J. Am. Chem. Soc. 130, 8160–8161 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Yu, Y., Yang, J. M. & Rebek, J. Molecules in confined spaces: reactivities and possibilities in cavitands. Chem 6, 1265–1274 (2020).

    Article  CAS  Google Scholar 

  18. Brown, C. J., Bergman, R. G. & Raymond, K. N. Enantioselective catalysis of the aza-cope rearrangement by a chiral supramolecular assembly. J. Am. Chem. Soc. 131, 17530–17531 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, B. et al. Asymmetric transformation driven by confinement and self-release in single-layered porous nanosheets. Angew. Chem. Int. Ed. Engl. 59, 22690–22696 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, K., Jordan, J. H., Hu, X. & Wang, L. Supramolecular strategies for controlling reactivity within confined nanospaces. Angew. Chem. Int. Ed. Engl. 59, 13712–13721 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, Z. et al. Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage. Nat. Chem. 15, 405–412 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Matern, J., Dorca, Y., Sánchez, L. & Fernández, G. Revising complex supramolecular polymerization under kinetic and thermodynamic control. Angew. Chem. Int. Ed. Engl. 58, 16730–16740 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wehner, M. et al. Supramolecular polymorphism in one-dimensional self-assembly by kinetic pathway control. J. Am. Chem. Soc. 141, 6092–6107 (2019).

    Article  CAS  Google Scholar 

  25. Kim, Y. J. et al. Collective helicity switching of a DNA-coat assembly. Nat. Nanotechnol. 12, 551–556 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotechnol. 11, 82–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Fanlo-Virgos, H., Alba, A. R., Hamieh, S., Colomb-Delsuc, M. & Otto, S. Transient substrate-induced catalyst formation in a dynamic molecular network. Angew. Chem. Int. Ed. Engl. 53, 11346–11350 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, H., Wang, Y., Shen, B., Liu, X. & Lee, M. Substrate-driven transient self-assembly and spontaneous disassembly directed by chemical reaction with product release. J. Am. Chem. Soc. 141, 4182–4185 (2019).

    Article  CAS  Google Scholar 

  29. Gulder, T. & Baran, P. S. Strained cyclophane natural products: macrocyclization at its limits. Nat. Prod. Rep. 29, 899–934 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Sun, B. et al. Homochiral porous nanosheets for enantiomer sieving. Nat. Mater. 17, 599–604 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Legrand, Y., Van der Lee, A. & Barboiu, M. Single-crystal X-ray structure of 1,3-dimethylcyclobutadiene by confinement in a crystalline matrix. Science 329, 299–302 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Zigon, N., Duplan, V., Wada, N. & Fujita, M. Crystalline sponge method: X-ray structure analysis of small molecules by post-orientation within porous crystals—principle and proof-of-concept studies. Angew. Chem. Int. Ed. Engl. 60, 25204–25222 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant nos. 21971084, 92156023 and 22150710515, to M.L., and 22171052, to M.S.), Science and Technology Commission of Shanghai Municipality (22520712300 and 23WZ2501000, to M.S.) and Fudan University Fund (to M.L. and M.S.). We thank Y. Kim for helpful discussion on simulations.

Author information

Authors and Affiliations

Authors

Contributions

L.T., H.W. and J.W. synthesized molecules and performed spectroscopic measurements and TEM experiments. L.T. and M.S. performed HPLC experiments for chiral macrocyclizations to quantify conversion and enantioselectivity. M.S. performed CD experiments, AFM measurements and dynamics simulation. J.K. performed X-ray experiments. M.L. developed the concept, supervised the research and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Mo Sun or Myongsoo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Niveen Khashab and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–84 and Tables 1 and 2.

Source data

Source Data Fig. 2

Source data for Fig. 2a–e of the calculations of the (P/M)-capsule.

Source Data Fig. 3

Source data for Fig. 3c,d.

Source Data Fig. 4

Source data for Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Sun, M., Wang, H. et al. Enantiocontrolled macrocyclization by encapsulation of substrates in chiral capsules. Nat. Synth 2, 1222–1231 (2023). https://doi.org/10.1038/s44160-023-00360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00360-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing