Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of two-dimensional polyoxoniobate-based clusterphenes with in-plane electron delocalization

Abstract

Two-dimensional (2D) materials offer unique platforms for exploring electronic structures and catalytic applications. Nanoclusters, referred to as ‘superatoms’, can be directly connected to construct 2D nanostructure networks. Here eight kinds of 2D clusterphenes are prepared by assembling polyoxoniobate (PONb) clusters with transition or rare-earth metal ions through a facile wet-chemical synthesis at room temperature. Monolayer and few-layer PONb-clusterphenes with hexagonal structures are constructed by the direct bonding of C3v symmetric {Nb24O72} clusters. The PONb-clusterphenes show enhanced photocatalytic activity for benzyl alcohol oxidation, with a conversion rate ten times greater than that of the PONb cluster units. Theoretical investigations suggest this is because of a reduction in the reaction energy barrier due to the in-plane electron delocalization of the PONb-clusterphenes. The constructed 2D PONb-clusterphenes with hexagonal arrangement and unique electronic properties provide an atomically precise model with which to study the electronic structures of cluster-based assemblies in heterogeneous catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration and morphologies of the MNb24 clusterphene.
Fig. 2: Characterizations of the CuNb24 clusterphene.
Fig. 3: Gallery of 2D clusterphenes constructed by different metal ions and POMs clusters.
Fig. 4: The photocatalytic oxidation performance of monolayer CuNb24 clusterphene.
Fig. 5: The electronic properties of CuNb24 clusterphene and the cluster unit.

Similar content being viewed by others

Data availability

All data that support this work are available within the paper and its Supplementary Information. Source data are provided with the paper.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  PubMed  Google Scholar 

  2. Carlucci, L., Ciani, G., Proserpio, D. M., Mitina, T. G. & Blatov, V. A. Entangled two-dimensional coordination networks: a general survey. Chem. Rev. 114, 7557–7580 (2014).

    CAS  PubMed  Google Scholar 

  3. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    CAS  PubMed  Google Scholar 

  4. Kong, X., Liu, Q., Zhang, C., Peng, Z. & Chen, Q. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46, 2127–2157 (2017).

    CAS  PubMed  Google Scholar 

  5. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    CAS  PubMed  Google Scholar 

  6. Xie, Z. et al. Chemistry, functionalization, and applications of recent monoelemental two-dimensional materials and their heterostructures. Chem. Rev. 122, 1127–1207 (2022).

    CAS  PubMed  Google Scholar 

  7. Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, W. et al. Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018).

    CAS  Google Scholar 

  9. Zhao, J. et al. Rise of silicene: a competitive 2D material. Prog. Mater Sci. 83, 24–151 (2016).

    CAS  Google Scholar 

  10. Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).

    CAS  PubMed  Google Scholar 

  11. Qiu, M. et al. Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 47, 5588–5601 (2018).

    CAS  PubMed  Google Scholar 

  12. Yasaei, P. et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27, 1887–1892 (2015).

    CAS  PubMed  Google Scholar 

  13. Liang, X., Zhang, Q., Lay, M. D. & Stickney, J. L. Growth of Ge nanofilms using electrochemical atomic layer deposition, with a “bait and switch” surface-limited reaction. J. Am. Chem. Soc. 133, 8199–8204 (2011).

    CAS  PubMed  Google Scholar 

  14. Jiang, S. et al. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 5, 3389 (2014).

    PubMed  Google Scholar 

  15. Zhang, S., Yan, Z., Li, Y., Chen, Z. & Zeng, H. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. 54, 3112–3115 (2015).

    CAS  Google Scholar 

  16. Pizzi, G. et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun. 7, 12585 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Claridge, S. A. et al. Cluster-assembled materials. ACS Nano 3, 244–255 (2009).

    CAS  PubMed  Google Scholar 

  18. Huang, R.-W. et al. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 9, 689–697 (2017).

    CAS  PubMed  Google Scholar 

  19. Fetzer, F. et al. Structural order enhances charge carrier transport in self-assembled Au-nanoclusters. Nat. Commun. 11, 6188 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Melinon, P. et al. From free clusters to cluster-assembled materials. Int. J. Mod. Phys. B 09, 339–397 (1995).

    CAS  Google Scholar 

  21. Wu, Z., Yao, Q., Zang, S. & Xie, J. Directed self-assembly of ultrasmall metal nanoclusters. ACS Mater. Lett. 1, 237–248 (2019).

    CAS  Google Scholar 

  22. Jena, P. & Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118, 5755–5870 (2018).

    CAS  PubMed  Google Scholar 

  23. Doud, E. A. et al. Superatoms in materials science. Nat. Rev. Mater. 5, 371–387 (2020).

    Google Scholar 

  24. Hou, L. et al. Synthesis of a monolayer fullerene network. Nature 606, 507–510 (2022).

    CAS  PubMed  Google Scholar 

  25. Long, D.-L., Tsunashima, R. & Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 49, 1736–1758 (2010).

    CAS  Google Scholar 

  26. Misra, A., Kozma, K., Streb, C. & Nyman, M. Beyond charge balance: counter-cations in polyoxometalate chemistry. Angew. Chem. Int. Ed. 59, 596–612 (2020).

    CAS  Google Scholar 

  27. Wang, S.-S. & Yang, G.-Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 115, 4893–4962 (2015).

    CAS  PubMed  Google Scholar 

  28. Lv, H. et al. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012).

    CAS  PubMed  Google Scholar 

  29. Izarova, N. V., Pope, M. T. & Kortz, U. Noble metals in polyoxometalates. Angew. Chem. Int. Ed. 51, 9492–9510 (2012).

    CAS  Google Scholar 

  30. Yin, P., Li, D. & Liu, T. Solution behaviors and self-assembly of polyoxometalates as models of macroions and amphiphilic polyoxometalate-organic hybrids as novel surfactants. Chem. Soc. Rev. 41, 7368–7383 (2012).

    CAS  PubMed  Google Scholar 

  31. Ren, L.-J., Liu, H.-K., Wu, H., Hu, M.-B. & Wang, W. Toward cluster materials with ordered structures via self-assembly of heterocluster Janus molecules. Adv. Mater. 32, 1805863 (2020).

    CAS  Google Scholar 

  32. Zhang, S., Shi, W. & Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 377, 100–104 (2022).

    CAS  PubMed  Google Scholar 

  33. Cameron, J. M. et al. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 51, 293–328 (2022).

    CAS  PubMed  Google Scholar 

  34. Liu, Q. & Wang, X. Cluster-assembled materials: ordered structures with advanced properties. InfoMat 3, 854–868 (2021).

    CAS  Google Scholar 

  35. Landsmann, S., Luka, M. & Polarz, S. Bolaform surfactants with polyoxometalate head groups and their assembly into ultra-small monolayer membrane vesicles. Nat. Commun. 3, 1299 (2012).

    PubMed  Google Scholar 

  36. Ni, B. et al. The synthesis of sub-nano-thick Pd nanobelt-based materials for enhanced hydrogen evolution reaction activity. CCS Chem. 2, 642–654 (2020).

    CAS  Google Scholar 

  37. Liu, Q. et al. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 14, 433–440 (2022).

    PubMed  Google Scholar 

  38. Liu, Q. & Wang, X. Sub-nanometric materials: electron transfer, delocalization, and beyond. Chem. Catal. 2, 1257–1266 (2022).

    CAS  Google Scholar 

  39. Di, J. et al. Polarized Cu–Bi site pairs for non-covalent to covalent interaction tuning toward N2 photoreduction. Adv. Mater. 34, 2204959 (2022).

    CAS  Google Scholar 

  40. Liu, Q. & Wang, X. Polyoxometalate clusters: sub-nanometer building blocks for construction of advanced materials. Matter 2, 816–841 (2020).

    Google Scholar 

  41. Wu, H. et al. Creating quasi two-dimensional cluster-assembled materials through self-assembly of a Janus polyoxometalate–silsesquioxane Co-cluster. Langmuir 33, 5283–5290 (2017).

    CAS  PubMed  Google Scholar 

  42. Yan, Y. & Wu, L. Polyoxometalate-incorporated supramolecular self-assemblies: structures and functional properties. Isr. J. Chem. 51, 181–190 (2011).

    CAS  Google Scholar 

  43. Liu, J.-C., Zhao, J.-W., Streb, C. & Song, Y.-F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 471, 214734 (2022).

    CAS  Google Scholar 

  44. Bontchev, R. P. & Nyman, M. Evolution of polyoxoniobate cluster anions. Angew. Chem. Int. Ed. 45, 6670–6672 (2006).

    CAS  Google Scholar 

  45. Huang, P. et al. Self-assembly and photocatalytic properties of polyoxoniobates: {Nb24O72}, {Nb32O96}, and {K12Nb96O288} clusters. J. Am. Chem. Soc. 134, 14004–14010 (2012).

    CAS  PubMed  Google Scholar 

  46. Zhu, Z.-K., Lin, Y.-Y., Li, X.-X., Zhao, D. & Zheng, S.-T. Integration of metallacycles and polyoxometalate macrocycles. Inorg. Chem. Front. 8, 1297–1302 (2021).

    CAS  Google Scholar 

  47. Dong, J. et al. A polyoxoniobate–polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew. Chem. Int. Ed. 56, 4473–4477 (2017).

    CAS  Google Scholar 

  48. Li, N. et al. Copper(II)-ethylenediamine linked Nb24 dimer with one dimensional chain architecture. Inorg. Chim. Acta 508, 119646 (2020).

    CAS  Google Scholar 

  49. Zhou, J. et al. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 13, 4681 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, J. et al. Cobalt single atoms embedded in nitrogen-doped graphene for selective oxidation of benzyl alcohol by activated peroxymonosulfate. Small 17, 2004579 (2021).

    CAS  Google Scholar 

  51. Shi, Q. et al. In-situ exfoliation and assembly of 2D/2D g-C3N4/TiO2(B) hierarchical microflower: enhanced photo-oxidation of benzyl alcohol under visible light. Carbon 196, 401–409 (2022).

    CAS  Google Scholar 

  52. Su, K., Liu, H., Gao, Z., Fornasiero, P. & Wang, F. Nb2O5-based photocatalysts. Adv. Sci. 8, 2003156 (2021).

    CAS  Google Scholar 

  53. Jiao, X. et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angew. Chem. Int. Ed. 59, 15497–15501 (2020).

    CAS  Google Scholar 

  54. Shishido, T. et al. Mechanism of photooxidation of alcohol over Nb2O5. J. Phys. Chem. C 113, 18713–18718 (2009).

    CAS  Google Scholar 

  55. Zhang, H., Wu, Q., Guo, C., Wu, Y. & Wu, T. Photocatalytic selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over Nb2O5 under visible light. ACS Sustain. Chem. Eng. 5, 3517–3523 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0700101), NSFC (22035004, 22241502), the XPLORER PRIZE and the China Postdoctoral Science Foundation (2022M721798).

Author information

Authors and Affiliations

Authors

Contributions

X.W. proposed and guided the project. Z.L. carried out the experiments and wrote the manuscript. Q.L. helped with the data analysis. Z.Z. and H.H. performed the calculations and analysed the results. X.W. and Q.L. helped with article revisions. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Hanshi Hu, Qingda Liu or Xun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Carsten Streb, Shou-Tian Zheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–29 and Tables 1–5.

Source data

Source Data Fig. 1

Data of height profile.

Source Data Fig. 2

Data of height profile, small-angle XRD, EXAFS and WT representation.

Source Data Fig. 4

Data of photocatalytic oxidation performance.

Source Data Fig. 5

Data of PDOS and conductivities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, Z., Hu, H. et al. Synthesis of two-dimensional polyoxoniobate-based clusterphenes with in-plane electron delocalization. Nat. Synth 2, 989–997 (2023). https://doi.org/10.1038/s44160-023-00305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00305-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing