Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general method for metallocluster site-differentiation

Abstract

The deployment of metalloclusters in applications such as catalysis and materials synthesis requires robust methods for site-differentiation: the conversion of clusters with symmetric ligand spheres to those with unsymmetrical ligand spheres. However, imparting precise patterns of site-differentiation is challenging because, compared with mononuclear complexes, the ligands bound to clusters exert limited spatial and electronic influence on one another. Here, we report a method that uses sterically encumbering ligands to bind to only a subset of a cluster’s coordination sites. Specifically, we show that homoleptic, phosphine-ligated Fe–S clusters undergo ligand substitution with N-heterocyclic carbenes to give heteroleptic clusters in which the resultant clusters’ site-differentiation patterns are encoded by the steric profile of the incoming N-heterocyclic carbene. This method affords access to every site-differentiation pattern for cuboidal [Fe4S4] clusters and can be extended to other cluster types, particularly in the stereoselective synthesis of site-differentiated Chevrel-type [Fe6S8] clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges in metallocluster site-differentiation illustrated for a tetrahedral cluster.
Fig. 2: Site-differentiation of [Fe4S4]+ clusters using remote steric effects.
Fig. 3: Expanding the scope of site-differentiation to develop a predictable model for determining the maximum number of substitution events, m.
Fig. 4: Stereoselective site-differentiation of [Fe6S8]+ clusters.

Similar content being viewed by others

Data availability

All characterization data, computational data and experimental protocols are provided in the Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 22143572214363. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. Coordinates of optimized structures are included as Supplementary Information.

References

  1. Muetterties, E. L. Metal clusters in catalysis III.—Clusters as models for chemisorption processes and heterogeneous. Catalysis. Bull. des Sociétés Chim. Belges 84, 959–986 (1975).

    Article  CAS  Google Scholar 

  2. Lee, S. C. & Holm, R. H. Nonmolecular metal chalcogenide/halide solids and their molecular cluster analogues. Angew. Chemie Int. Ed. 29, 840–856 (1990).

    Article  Google Scholar 

  3. Beinert, H., Holm, R. H. & Munck, E. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Sokolov, M. N., Fedin, V. P. & Sykes, A. G. In Comprehensive Coordination Chemistry II Vol. 4 (eds McCleverty, J. A., Meyer, T. J. & Wedd, A. G.) 761–823 (Elsevier Pergamon, 2003).

  5. Degroot, M. W. & Corrigan, J. F. In Comprehensive Coordination Chemistry II Vol. 7 (eds McCleverty, J. A., Meyer, T. J., Fujita, M., Powell, A. K. & Creutz, C. A.) 57–123 (Elsevier Pergamon, 2003).

  6. Jena, P. & Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118, 5755–5870 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Doud, E. A. et al. Superatoms in materials science. Nat. Rev. Mater. 5, 371–387 (2020).

    Article  Google Scholar 

  8. Cesari, C., Shon, J. H., Zacchini, S. & Berben, L. A. Metal carbonyl clusters of groups 8–10: synthesis and catalysis. Chem. Soc. Rev. 50, 9503–9539 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Venkateswara Rao, P. & Holm, R. H. Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104, 527–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, S. C., Lo, W. & Holm, R. H. Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron–sulfur clusters. Chem. Rev. 114, 3579–3600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rathnayaka, S. C. & Mankad, N. P. Coordination chemistry of the CuZ site in nitrous oxide reductase and its synthetic mimics. Coord. Chem. Rev. 429, 213718 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Bigness, A., Vaddypally, S., Zdilla, M. J. & Mendoza-Cortes, J. L. Ubiquity of cubanes in bioinorganic relevant compounds. Coord. Chem. Rev. 450, 214168 (2022).

    Article  CAS  Google Scholar 

  13. Bag, S., Trikalitis, P. N., Chupas, P. J., Armatas, G. S. & Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317, 490–493 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Claridge, S. A. et al. Cluster-assembled materials. ACS Nano 3, 244–255 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Roy, X. et al. Nanoscale atoms in solid-state chemistry. Science 341, 157–160 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Tomalia, D. A. & Khanna, S. N. A. Systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive mendeleev-like nanoperiodic tables. Chem. Rev. 116, 2705–2774 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Horwitz, N. E. et al. Redox-active 1D coordination polymers of iron–sulfur clusters. J. Am. Chem. Soc. 141, 3940–3951 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J., Bu, X., Feng, P. & Wu, T. Metal chalcogenide supertetrahedral clusters: synthetic control over assembly, dispersibility, and their functional applications. Acc. Chem. Res. 53, 2261–2272 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Gillen, J. H. et al. Synthesis and disassembly of an organometallic polymer comprising redox-active Co4S4 clusters and janus biscarbene linkers. Chem. Commun. 58, 4885–4888 (2022).

  20. Bartholomew, A. K. et al. Superatom regiochemistry dictates the assembly and surface reactivity of a two-dimensional material. J. Am. Chem. Soc. 144, 1119–1124 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Kephart, J. A., Mitchell, B. S., Kaminsky, W. & Velian, A. Multi-active site dynamics on a molecular Cr/Co/Se cluster catalyst. J. Am. Chem. Soc. 144, 9206–9211 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. McCool, N. S., Robinson, D. M., Sheats, J. E. & Dismukes, G. C. A Co4O4 cubane water oxidation catalyst inspired by photosynthesis. J. Am. Chem. Soc. 133, 11446–11449 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Li, G. & Jin, R. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 46, 1749–1758 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Pombeiro, A. J. L. & Kukushkin, V. Y. In Comprehensive Coordination Chemistry II Vol. 1 (eds McCleverty, J. A., Meyer, T. J. & Lever, A. B. P.) 585–594 (Elsevier Pergamon, 2003).

  25. Stack, T. D. P. & Holm, R. H. Subsite-specific functionalization of the [4Fe-4S]2+ analog of iron-sulfur protein clusters. J. Am. Chem. Spc. 109, 2546–2547 (1987).

  26. Walsdorff, C., Saak, W. & Pohl, S. A new preorganized tridentate ligand bearing three indolethiolategroups. Preparation of 31 subsite-differentiated Fe4S4 clusters. J. Chem. Soc. Dalt. Trans. 11, 1857–1862 (1997).

    Article  Google Scholar 

  27. Ohki, Y. et al. Synthetic analogues of [Fe4S4(Cys)3(His)] in hydrogenases and [Fe4S4(Cys)4] in HiPIP derived from all-ferric [Fe4S4{N(SiMe3)2}4]. Proc. Natl Acad. Sci. 108, 12635–12640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanady, J. S., Tsui, E. Y., Day, M. W. & Agapie, T. A synthetic model of the mn3ca subsite of the oxygen-evolving complex in photosystem II. Science 333, 733–736 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Terada, T. et al. Tridentate thiolate ligands: application to the synthesis of the site-differentiated [4Fe-4S] cluster having a hydrosulfide ligand at the unique iron center. Chem. Asian J 7, 920–929 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. McSkimming, A. & Suess, D. L. M. Selective synthesis of site-differentiated Fe4S4 and Fe6S6 clusters. Inorg. Chem. 57, 14904–14912 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Ye, M., Thompson, N. B., Brown, A. C. & Suess, D. L. M. A synthetic model of enzymatic [Fe4S4]–Alkyl intermediates. J. Am. Chem. Soc. 141, 13330–13335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown, A. C. & Suess, D. L. M. Controlling substrate binding to Fe4S4 clusters through remote steric effects. Inorg. Chem. 58, 5273–5280 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. McSkimming, A., Sridharan, A., Thompson, N. B., Müller, P. & Suess, D. L. M. An [Fe4S4]3+-alkyl cluster stabilized by an expanded scorpionate ligand. J. Am. Chem. Soc. 142, 14314–14323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Long, J. R., Williamson, A. S. & Holm, R. H. Dimensional reduction of Re6Se8Cl2: sheets, chains, and discrete clusters composed of chloride‐terminated [Re6Q8]2+ (Q = S, Se) cores. Angew. Chemie Int. Ed. 34, 226–229 (1995).

    Article  CAS  Google Scholar 

  35. Zheng, Z., Gray, T. G. & Holm, R. H. Synthesis and structures of solvated monoclusters and bridged Di- and triclusters based on the cubic building block [Re63-Se)8]2+. Inorg. Chem. 38, 4888–4895 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Champsaur, A. M. et al. Weaving nanoscale cloth through electrostatic templating. J. Am. Chem. Soc. 139, 11718–11721 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Jin, S., Adamchuk, J., Xiang, B. & DiSalvo, F. J. The Dean−Evans relation in 31P NMR spectroscopy and its application to the chemistry of octahedral tungsten sulfide clusters. J. Am. Chem. Soc. 124, 9229–9240 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Que, L., Bobrik, M. A., Ibers, J. A. & Holm, R. H. Synthetic analogs of the active sites of iron-sulfur proteins. VII. Ligand substitution reactions of the tetranuclear clusters [Fe4S4(SR)4]2− and the structure of [(CH3)4N]2[Fe4S4(SC6H5)4]. J. Am. Chem. Soc. 96, 4168–4178 (1974).

    Article  CAS  PubMed  Google Scholar 

  39. Willer, M. W., Long, J. R., McLauchlan, C. C. & Holm, R. H. Ligand substitution reactions of [Re6S8Br6]4–: a basis set of Re6S8 clusters for building multicluster assemblies. Inorg. Chem. 37, 328–333 (1998).

    Article  CAS  Google Scholar 

  40. Reed, D. A. et al. Controlling ligand coordination spheres and cluster fusion in superatoms. J. Am. Chem. Soc. 144, 306–313 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, H.-C. & Holm, R. H. Synthesis and reactions of cubane-type iron−sulfur−phosphine clusters, including soluble clusters of nuclearities 8 and 16. Inorg. Chem. 42, 11–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Zheng, Z., Long, J. R. & Holm, R. H. A basis set of Re6Se8 cluster building blocks and demonstration of their linking capability: directed synthesis of an Re12Se16 dicluster. J. Am. Chem. Soc. 119, 2163–2171 (1997).

    Article  CAS  Google Scholar 

  43. Harmjanz, M., Saak, W., Haase, D. & Pohl, S. Aryl isonitrile binding to [Fe4S4] clusters: formation of [Fe4S4]+ and [{Fe4S4}2]2+ cores. Chem. Commun. (1997) 951–952 (1997).

  44. Champsaur, A. M. et al. Building diatomic and triatomic superatom molecules. Nano Lett. 16, 5273–5277 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Steigerwald, M. L. et al. Effect of diverse ligands on the course of a molecules-to-solids process and properties of its intermediates. Inorg. Chem. 33, 3389–3395 (1994).

    Article  CAS  Google Scholar 

  46. Goh, C., Segal, B. M., Huang, J., Long, J. R. & Holm, R. H. Polycubane clusters: synthesis of [Fe4S4(PR3)4]1+,0 (R = But, Cy, Pri) and [Fe4S4]0 core aggregation upon loss of phosphine. J. Am. Chem. Soc. 118, 11844–11853 (1996).

    Article  CAS  Google Scholar 

  47. Fuhr, O., Dehnen, S. & Fenske, D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 42, 1871 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Drance, M. J. et al. Controlled expansion of a strong-field iron nitride cluster: multi-site ligand substitution as a strategy for activating interstitial nitride nucleophilicity. Angew. Chemie Int. Ed. 57, 13057–13061 (2018).

    Article  CAS  Google Scholar 

  49. Loewen, N. D., Pattanayak, S., Herber, R., Fettinger, J. C. & Berben, L. A. Quantification of the electrostatic effect on redox potential by positive charges in a catalyst microenvironment. J. Phys. Chem. Lett. 12, 3066–3073 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Cammack, R. In Advances in Inorganic Chemistry: Iron Sulfur Proteins Vol. 38 (eds Sykes, A. G. & Cammack, R.) 281–322 (Elsevier, 1992).

  51. Rees, D. C. & Howard, J. B. The interface between the biological and inorganic worlds: iron-sulfur metalloclusters. Science 300, 929–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Rouault, T. A. Iron-sulfur proteins hiding in plain sight. Nat. Chem. Biol. 11, 442–445 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Bista, D. et al. High-spin superatom stabilized by dual subshell filling. J. Am. Chem. Soc. 144, 5172–5179 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Deng, L. & Holm, R. H. Stabilization of fully reduced iron− sulfur clusters by carbene ligation: the [FenSn]0 Oxidation Levels (n = 4, 8). J. Am. Chem. Soc. 130, 9878–9886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Díez-González, S. & Nolan, S. P. Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: a quest for understanding. Coord. Chem. Rev. 251, 874–883 (2007).

    Article  Google Scholar 

  56. Huang, J., Stevens, E. D., Nolan, S. P. & Petersen, J. L. Olefin metathesis-active ruthenium complexes bearing a nucleophilic carbene ligand. J. Am. Chem. Soc. 121, 2674–2678 (1999).

    Article  CAS  Google Scholar 

  57. Weskamp, T., Schattenmann, W. C., Spiegler, M. & Herrmann, W. A. A novel class of ruthenium catalysts for olefin metathesis. Angew. Chemie Int. Ed. 37, 2490–2493 (1998).

    Article  CAS  Google Scholar 

  58. Brown, A. C. & Suess, D. L. M. Reversible formation of alkyl radicals at [Fe4S4] clusters and its implications for selectivity in radical SAM enzymes. J. Am. Chem. Soc. 142, 14240–14248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sridharan, A., Brown, A. C. & Suess, D. L. M. A terminal imido complex of an iron–sulfur cluster. Angew. Chemie Int. Ed. 60, 12802–12806 (2021).

    Article  CAS  Google Scholar 

  60. Brown, A. C., Thompson, N. B. & Suess, D. L. M. Evidence for low-valent electronic configurations in iron-sulfur clusters. J. Am. Chem. Soc. 144, 9066–9073 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Ye, M., Brown, A. C. & Suess, D. L. M. Reversible alkyl-group migration between iron and sulfur in [Fe4S4] clusters. J. Am. Chem. Soc. 144, 13184–13195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown, A. C. & Suess, D. L. M. Valence localization in alkyne and alkene adducts of synthetic [Fe4S4]+ clusters. Inorg. Chem. 62, 1911–1918 (2023).

  63. Kim, Y., Sridharan, A. & Suess, D. L. M. The elusive mononitrosylated [Fe4S4] cluster in three redox states. Angew. Chemie Int. Ed. 61, e202213032 (2022).

    Article  CAS  Google Scholar 

  64. Tan, L. L., Holm, R. H. & Lee, S. C. Structural analysis of cubane-type iron clusters. Polyhedron 58, 206–217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guzei, I. A. & Wendt, M. An improved method for the computation of ligand steric effects based on solid angles. Dalt. Trans. 33, 3991–3999 (2006).

    Article  Google Scholar 

  66. Falivene, L. et al. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11, 872–879 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Goddard, C. A., Long, J. R. & Holm, R. H. Synthesis and characterization of four consecutive members of the five-member [Fe6S8(PEt3)6]n+ (n = 0−4) cluster electron transfer series. Inorg. Chem. 35, 4347–4354 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Huang, J., Schanz, H. J., Stevens, E. D. & Nolan, S. P. Stereoelectronic effects characterizing nucleophilic carbene ligands bound to the Cp*RuCl (Cp* = η5-C5Me5) moiety: a structural and thermochemical investigation. Organometallics 18, 2370–2375 (1999).

  69. Nelson, D. J. & Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 42, 6723 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Durham, J. L., Wilson, W. B., Huh, D. N., Mcdonald, R. & Szczepura, L. F. Organometallic rhenium(III) chalcogenide clusters: coordination of N-heterocyclic carbenes. Chem. Commun. 51, 10536–10538 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. B. Lewis and M. Kumar for their assistance with mass spectrometry experiments and P. Müller for assistance with XRD experiments. This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM136882 (D.L.M.S.) and by seed funding from the American Chemical Society Petroleum Research Fund under award number 60568-DNI3 (D.L.M.S.). A.C.B. acknowledges fellowships from MathWorks, the National Science Foundation (Graduate Research Fellowship no. 1122374) and the Fannie and John Hertz Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.M.B., A.C.B. and A.S. performed the experiments. T.M.B., A.C.B., A.S. and D.L.M.S. analysed the data and contributed to the manuscript writing.

Corresponding author

Correspondence to Daniel L. M. Suess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: A. Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Synthetic procedures and supplemental data.

Supplementary Data 1

Crystallographic data for 2; CCDC 2214363.

Supplementary Data 2

Crystallographic data for 3; CCDC 2214362.

Supplementary Data 3

Crystallographic data for 4; CCDC 2214361.

Supplementary Data 4

Crystallographic data for 5; CCDC 2214359.

Supplementary Data 5

Crystallographic data for 7; CCDC 2214360.

Supplementary Data 6

Crystallographic data for 9; CCDC 2214357.

Supplementary Data 7

Crystallographic data for 10; CCDC 2214358.

Supplementary Data 8

Coordinate files of optimized mononuclear complexes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bostelaar, T.M., Brown, A.C., Sridharan, A. et al. A general method for metallocluster site-differentiation. Nat. Synth 2, 740–748 (2023). https://doi.org/10.1038/s44160-023-00286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00286-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing