Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A class of non-aromatic 1,3-disilapyrroles acting as stable organosilicon-based triplet diradicals

Abstract

Open-shell molecules with unpaired electrons and a high-spin S ≥ 1 configuration are of fundamental importance in chemistry, biology and molecular electronics. Among metal-free systems, carbon- and silicon-based triplet diradicals with two unpaired electrons and strong ferromagnetic coupling are proposed as key intermediates in many organic and organometallic transformations but their isolation remains challenging due to their very high reactivity. Here we report the facile synthesis of isolable 1,3-disilapyrroles which act as organosilicon-based delocalized triplet diradicals. The 1,3-disilapyrroles result from cycloaddition reactions of two divalent silicon atoms in a N,N-bis(silylenyl)aniline to the carbon–carbon triple bond of diphenylacetylenes. Remarkably, the spin-density distribution of these triplet diradicals exhibits an asymmetric delocalization due to steric congestion. The unpaired electrons in the 1,3-disilapyrroles show unprecedented reactivity, including cyclotetramerization and cleavage of the carbon–oxygen triple bond of CO at ambient temperature with subsequent C(sp3)–H bond activation to give a polycyclic product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of diradicals and biradicals, and the diradicals of this work.
Fig. 2: Syntheses of compounds 2H, 2F, t2H, t2F, (2H)4 and 3–6.
Fig. 3: Molecular structures of (2H)4, 2F, 2F+, 3 and 6.
Fig. 4: NAdO analysis of 2F, and the spin populations of 2F and 2F+.
Fig. 5: EPR spectra of 2H, t2H, 2F and t2F.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2211907 (3), 2211908 (4), 2211909 (2F), 2211910 (2H), 2211911 (t1), 2211912 (6), 2211913 (5), 2211914 (t2F), 2211915 (t2H) and 2211916 ((2H)4). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Additional synthetic methods, NMR spectra, cyclic voltammetry data, single-crystal X-ray diffraction data, EPR spectra, magnetism data and computational details are available in the Supplementary Information.

References

  1. Fatila, E. M. et al. Fine-tuning the single-molecule magnet properties of a [Dy(III)-radical]2 pair. J. Am. Chem. Soc. 135, 9596–9599 (2013).

    CAS  PubMed  Google Scholar 

  2. Caneschi, A. et al. Cobalt(II)–nitronyl nitroxide chains as molecular magnetic nanowires. Angew. Chem. Int. Ed. 40, 1760–1763 (2001).

    CAS  Google Scholar 

  3. Gatteschi, D. & Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).

    CAS  Google Scholar 

  4. Chandra Mondal, K., Roy, S. & Roesky, H. W. Silicon based radicals, radical ions, diradicals and diradicaloids. Chem. Soc. Rev. 45, 1080–1111 (2016).

    CAS  PubMed  Google Scholar 

  5. Turmanskii, B., Karni, M. & Apeloig, Y. in Organosilicon Compounds: Theory and Experiment (ed. Lee, V. Ya.) 232–287 (Elsevier, 2017).

  6. Power, P. P. Persistent and stable radicals of the heavier main group elements and related species. Chem. Rev. 103, 789–810 (2003).

    CAS  PubMed  Google Scholar 

  7. Abe, M., Ye, J. & Mishima, M. The chemistry of localized singlet 1,3-diradicals (biradicals): from putative intermediates to persistent species and unusual molecules with a π-single bonded character. Chem. Soc. Rev. 41, 3808–3820 (2012).

    CAS  PubMed  Google Scholar 

  8. Abe, M. Diradicals. Chem. Rev. 113, 7011–7088 (2013).

    CAS  PubMed  Google Scholar 

  9. Kundu, S., Sinhababu, S., Chandrasekhar, V. & Roesky, H. W. Stable cyclic (alkyl)(amino)carbene (cAAC) radicals with main group substituents. Chem. Sci. 10, 4727–4741 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng, Z., Tang, S., Su, Y. & Wang, X. Recent advances in stable main group element radicals: preparation and characterization. Chem. Soc. Rev. 51, 5930–5973 (2022).

    CAS  PubMed  Google Scholar 

  11. Niecke, E., Fuchs, A., Baumeister, F., Nieger, M. & Schoeller, W. W. A P2C2 four-membered ring with unusual bonding—synthesis, structure, and ring opening of a 1,3-diphosphacyclobutane-2,4-diyl. Angew. Chem. Int. Ed. 34, 555–557 (1995).

    CAS  Google Scholar 

  12. Takeuchi, K., Ichinohe, M. & Sekiguchi, A. Access to a stable Si2N2 four-membered ring with non-Kekulé singlet biradical character from a disilyne. J. Am. Chem. Soc. 133, 12478–12481 (2011).

    CAS  PubMed  Google Scholar 

  13. Zhang, S. H. et al. Synthesis and characterization of a singlet delocalized 2,4-diimino-1,3-disilacyclobutanediyl and a silylenylsilaimine. Chem. Eur. J. 18, 4258–4263 (2012).

    PubMed  Google Scholar 

  14. Scheschkewitz, D. et al. Singlet diradicals: from transition states to crystalline compounds. Science 295, 1880–1881 (2002).

    CAS  PubMed  Google Scholar 

  15. Cui, C., Brynda, M., Olmstead, M. M. & Power, P. P. Synthesis and characterization of the non-Kekulé, singlet biradicaloid Ar′Ge(μ-NSiMe3)2 GeAr′ (Ar′ = 2,6-Dipp2C6H3, Dipp = 2,6-i-Pr2C6H3). J. Am. Chem. Soc. 126, 6510–6511 (2004).

    CAS  PubMed  Google Scholar 

  16. Cox, H., Hitchcock, P. B., Lappert, M. F. & Pierssens, L. J.-M. A 1,3-diaza-2,4-distannacyclobutanediide: synthesis, structure, and bonding. Angew. Chem. Int. Ed. 43, 4500–4504 (2004).

    CAS  Google Scholar 

  17. Sen, S. S. et al. Synthesis, structure, and theoretical investigation of amidinato supported 1,4-disilabenzene. Chem. Commun. 46, 5873–5875 (2010).

    CAS  Google Scholar 

  18. Yeong, H. X., Xi, H. W., Lim, K. H. & So, C. W. Synthesis and characterization of an amidinate-stabilized cis-1,2-disilylenylethene [cis-LSi{C(Ph) = C(H)}SiL] and a singlet delocalized biradicaloid [LSi(μ2-C2Ph)2SiL]. Chem. Eur. J. 16, 12956–12961 (2010).

    CAS  PubMed  Google Scholar 

  19. Chen, Y. et al. Stable radical cation and dication of a 1,4-disilabenzene. J. Am. Chem. Soc. 143, 2212–2216 (2021).

    CAS  PubMed  Google Scholar 

  20. Mondal, K. C. et al. Conversion of a singlet silylene to a stable biradical. Angew. Chem. Int. Ed. 52, 1801–1805 (2013).

    CAS  Google Scholar 

  21. Mondal, K. C., Dittrich, B., Maity, B., Koley, D. & Roesky, H. W. Cyclic alkyl(amino) carbene stabilized biradical of disilicontetrachloride. J. Am. Chem. Soc. 136, 9568–9571 (2014).

    CAS  PubMed  Google Scholar 

  22. Kundu, S. et al. Organosilicon radicals with Si–H and Si–Me bonds from commodity precursors. J. Am. Chem. Soc. 139, 11028–11031 (2017).

    CAS  PubMed  Google Scholar 

  23. Maiti, A. et al. CAAC‐based Thiele and Schlenk hydrocarbons. Angew. Chem. Int. Ed. 59, 6729–6734 (2020).

    CAS  Google Scholar 

  24. Maiti, A., Chandra, S., Sarkar, B. & Jana, A. Acyclic diaminocarbene-based Thiele, Chichibabin, and Müller hydrocarbons. Chem. Sci. 11, 11827–11833 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nayak, M. K. et al. A bis-NHC–CAAC dimer derived dicationic diradical. Chem. Sci. 13, 12533–12539 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nozawa, T., Nagata, M., Ichinohe, M. & Sekiguchi, A. Isolable p- and m-[(tBu2MeSi)2Si]2C6H4: disilaquinodimethane vs triplet bis(silyl radical). J. Am. Chem. Soc. 133, 5773–5775 (2011).

    CAS  PubMed  Google Scholar 

  27. Shan, C., Yao, S. & Driess, M. Where silylene–silicon centres matter in the activation of small molecules. Chem. Soc. Rev. 49, 6733–6754 (2020).

    CAS  PubMed  Google Scholar 

  28. Xiong, Y., Yao, S., Ruzicka, A. & Driess, M. Distinctly different reactivity of bis(silylenyl)- versus phosphanyl-silylenyl-substituted o-dicarborane towards O2, N2O and CO2. Chem. Commun. 57, 5965–5968 (2021).

    CAS  Google Scholar 

  29. Wang, Y., Szilvási, T., Yao, S. & Driess, M. A bis(silylene)-stabilized diphosphorus compound and its reactivity as a monophosphorus anion transfer reagent. Nat. Chem. 12, 801–808 (2020).

    CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. Silicon-mediated selective homo- and heterocoupling of carbon monoxide. J. Am. Chem. Soc. 141, 626–634 (2019).

    CAS  PubMed  Google Scholar 

  31. Xiong, Y. et al. An isolable 2,5‐disila‐3,4‐diphosphapyrrole and a conjugated Si=P−Si=P−Si=N chain through degradation of white phosphorus with a N,N ‐bis(silylenyl)aniline. Angew. Chem. Int. Ed. 61, e202209250 (2022).

    CAS  Google Scholar 

  32. Szczepanik, D. W. et al. The electron density of delocalized bonds (EDDB) applied for quantifying aromaticity. Phys. Chem. Chem. Phys. 19, 28970–28981 (2017).

    CAS  PubMed  Google Scholar 

  33. von Ragué Schleyer, P. et al. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996).

    Google Scholar 

  34. Menéndez, M. et al. One-electron images in real space: natural adaptive orbitals. J. Comput. Chem. 36, 833–843 (2015).

    PubMed  Google Scholar 

  35. Zhang, J. X., Sheong, F. K. & Lin, Z. Unravelling chemical interactions with principal interacting orbital analysis. Chem. Eur. J. 24, 9639–9650 (2018).

    CAS  PubMed  Google Scholar 

  36. Yao, S. et al. Bis(silylene)-stabilized monovalent nitrogen complexes. Angew. Chem. Int. Ed. 59, 22043–22047 (2020).

    CAS  Google Scholar 

  37. J. A. Berson, in Reactive Intermediate Chemistry (eds Moss, R. A., Platz, M. S. & Jones, M., Jr) Ch. 5 (Wiley, 2004); https://doi.org/10.1002/0471721492.ch5

  38. Fujimori, S. & Inoue, S. Carbon monoxide in main-group chemistry. J. Am. Chem. Soc. 144, 2034–2050 (2022).

    CAS  PubMed  Google Scholar 

  39. Ganesamoorthy, C. et al. A silicon–carbonyl complex stable at room temperature. Nat. Chem. 12, 608–614 (2020).

    CAS  PubMed  Google Scholar 

  40. Reiter, D., Holzner, R., Porzelt, A., Frisch, P. & Inoue, S. Silylated silicon–carbonyl complexes as mimics of ubiquitous transition-metal carbonyls. Nat. Chem. 12, 1131–1135 (2020).

    CAS  PubMed  Google Scholar 

  41. Cowley, M. J. et al. Carbonylation of cyclotrisilenes. Angew. Chem. Int. Ed. 52, 13247–13250 (2013).

    CAS  Google Scholar 

  42. Garg, P. et al. Activation of CO using a 1,2‐disilylene: facile synthesis of an abnormal N‐heterocyclic silylene. Angew. Chem. Int. Ed. 61, e202201705 (2022).

    CAS  Google Scholar 

  43. Xiong, Y., Yao, S., Szilva, T., Ruzicka, A. & Driess, M. Homocoupling of CO and isocyanide mediated by a C,C′-bis(silylenyl)-substituted ortho-carborane. Chem. Commun. 56, 747–750 (2020).

    CAS  Google Scholar 

  44. Majumdar, M. et al. Reductive cleavage of carbon monoxide by a disilenide. Angew. Chem. Int. Ed. 54, 8746–8750 (2015).

    CAS  Google Scholar 

  45. Protchenko, A. V. et al. Reduction of carbon oxides by an acyclic silylene: reductive coupling of CO. Angew. Chem. Int. Ed. 58, 1808–1812 (2019).

    CAS  Google Scholar 

  46. Sen, S. S., Roesky, H. W., Stern, D., Henn, J. & Stalke, D. High yield access to silylene RSiCl (R = PhC(NtBu)2) and its reactivity toward alkyne: synthesis of stable disilacyclobutene. J. Am. Chem. Soc. 132, 1123–1126 (2010).

    CAS  PubMed  Google Scholar 

  47. Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532–536 (2008).

    CAS  Google Scholar 

  48. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Google Scholar 

  49. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallogr. A 71, 59–75 (2015).

    CAS  Google Scholar 

  50. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    CAS  Google Scholar 

  51. Frisch, M. J. et al. Gaussian 16, revision A.03 (Gaussian, 2016).

  52. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  53. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS  PubMed  Google Scholar 

  54. Zheng, J., Xu, X. & Truhlar, D. G. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 128, 295–305 (2010).

    Google Scholar 

  55. Papajak, E. et al. Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J. Chem. Theory Comput. 7, 3027–3034 (2011).

    CAS  PubMed  Google Scholar 

  56. Wiberg, K. B. Application of the Pople–Santry–Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1968).

    CAS  Google Scholar 

  57. Glendening, E. D. et al. NBO 7.0 (Theoretical Chemistry Institute, University of Wisconsin, 2013); http://nbo7.chem.wisc.edu/

  58. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    PubMed  Google Scholar 

  59. Legault, C. Y. CYLview, 1.0b edn (Université de Sherbrooke, Sherbrooke, 2009); http://www.cylview.org

  60. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    CAS  Google Scholar 

  61. Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the DFG (German Research Foundation) under Germany´s Excellence Strategy–EXC 2008–390540038–UniSysCat for S.Y., C. Lorent, K.B.K., G.V., C. Limberg and M.D., and DR-226/21-1 for Y.X., S.Y., M.D., and the National Science Foundation of China (21873079) for S.D. and J.Z.

Author information

Authors and Affiliations

Authors

Contributions

Synthesis and X-ray diffraction analyses were performed by Y.X. and S.Y., and supervised by M.D. EPR experiments were performed and analysed by C. Lorent. Magnetic susceptibility measurements were performed and analysed by K.B.K. and C. Limberg. Cyclic voltammetry measurements were performed and analysed by G.V. DFT calculations and computational analysis were performed by S.D. and J.Z. The manuscript was written by Y.X., S.Y., M.D., and edited by all the authors.

Corresponding author

Correspondence to Matthias Driess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Milan Gembicky, Dietmar Stalke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spin population of 2H, t2H, t2F, 2-Ph, 2-Me, and 2-H.

a. Spin population of 2H, t2H, and t2F (red numbers, triplet) shows asymmetric spin density distribution. b. Spin population of 2-Ph, 2-Me, and 2-H shows nearly or completely symmetric spin density distribution. Hydrogen atoms in 3D structures are omitted for clarity. isovalue = 0.005 a.u.

Extended Data Fig. 2 NAdO analysis on the bonding modes of 2F2+.

a. NAdO analysis on the Si1-C3 bonding modes of 2F2+, b. NAdO analysis on the C3-C4 bonding modes of 2F2+, c. NAdO analysis on the C4-Si2 bonding modes of 2F2+, d. NAdO analysis on the Si2-N5 bonding modes of 2F2+, e. NAdO analysis on the Si1-N5 bonding modes of 2F2+. isovalue = 0.05 a.u.

Supplementary information

Supplementary Information

Synthetic methods, NMR spectra, cyclic voltammetry data, single-crystal X-ray diffraction data, EPR spectra, magnetism data and computational details including Supplementary Figs. 1–47 and Tables 1–26.

Supplementary Data 1

Crystal data for compound t1, CCDC 2211911

Supplementary Data 2

Crystal data for compound 2H, CCDC 2211910

Supplementary Data 3

Crystal data for compound 2F, CCDC 2211909

Supplementary Data 4

Crystal data for compound t2H, CCDC 2211915

Supplementary Data 5

Crystal data for compound t2F, CCDC 2211914

Supplementary Data 6

Crystal data for compound (2H)4, CCDC 2211916

Supplementary Data 7

Crystal data for compound 3, CCDC 2211907

Supplementary Data 8

Crystal data for compound 4, CCDC 2211908

Supplementary Data 9

Crystal data for compound 5, CCDC 2211913

Supplementary Data 10

Crystal data for compound 6, CCDC 2211912

Supplementary Data 11

Fig 1: Curie plot of the half-field transition from 2H, 2F, t2H and t2F; Fig 2: EPR spectra of 2F and 2F+; Fig 3: Magnetic susceptibility of 4; Fig 5: Cyclic voltammetry of 2F

Source data

Source Data Fig. 5

Source data of Figure 5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Dong, S., Yao, S. et al. A class of non-aromatic 1,3-disilapyrroles acting as stable organosilicon-based triplet diradicals. Nat. Synth 2, 678–687 (2023). https://doi.org/10.1038/s44160-023-00279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00279-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing