Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bis(silylene)-stabilized diphosphorus compound and its reactivity as a monophosphorus anion transfer reagent

Subjects

Abstract

In contrast to the well-established transition-metal-mediated activation of white phosphorus (P4), the metal-free direct functionalization of P4 has remained rare. The conversion of P4 into a reactive zero-valent diphosphorus compound (P2) has proven challenging to carry out without relying on metal reactivity. Herein, we describe the facile degradation of P4 mediated by two divalent silicon atoms in a bis(silylene) scaffold, resulting in a silylene-stabilized zero-valent P2 complex. The presence of two lone pairs of electrons on each P atom in the silylene-stabilized P2 complex enables a rich reactivity towards small molecules; reaction of the P2 species with CO2, water or a borane leads to the formation of P–C, P–H or P–B bonds, respectively. Notably, the P2 complex also serves as a single phosphorus anion (P) transfer reagent towards metal carbonyls and a chlorogermylene compound, leading to the synthetically valuable phosphaketenide (PCO) ligand and a phosphinidene germylene complex, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isolable main group element stabilized P2 complexes A, B and C, and the reactivity of C.
Fig. 2: Synthesis and molecular structure of the bis(NHSi)-stabilized zero-valent P2 complex 2.
Fig. 3: Syntheses and molecular structures of 3–6.
Fig. 4: DFT-derived mechanism of the reaction of Cr(CO)6 with 2 leading to 6.
Fig. 5: Syntheses and molecular structures of compounds 8–10.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1978612 (2), 1978615 (3), 1978613 (4), 1978616 (5), 1978614 (6), 1978617 (7), 1978618 (8), 1978619 (9), 1978620 (10). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article, its Supplementary Information and from the corresponding author upon reasonable request.

References

  1. Corbridge, D. E. C. Phosphorus: an Outline of its Chemistry, Biochemistry, and Technology 5th edn (Elsevier, 1995).

  2. Peruzzini, M., Gonsalvi, L. & Romerosa, A. Coordination chemistry and functionalization of white phosphorus via transition metal complexes. Chem. Soc. Rev. 34, 1038–1047 (2005).

    CAS  PubMed  Google Scholar 

  3. Cummins, C. C. Terminal, anionic carbide, nitride, and phosphide transition-metal complexes as synthetic entries to low-coordinate phosphorus derivatives. Angew. Chem. Int. Ed. 45, 862–870 (2006).

    CAS  Google Scholar 

  4. Cossairt, B. M., Piro, N. A. & Cummins, C. C. Early-transition-metal-mediated activation and transformation of white phosphorus. Chem. Rev. 110, 4164–4177 (2010).

    CAS  PubMed  Google Scholar 

  5. Caporali, M., Gonsalvi, L., Rossin, A. & Peruzzini, M. P4 activation by late-transition metal complexes. Chem. Rev. 110, 4178–4235 (2010).

    CAS  PubMed  Google Scholar 

  6. Figueroa, J. S. & Cummins, C. C. A niobaziridine hydride system for white phosphorus or dinitrogen activation and N- or P-atom transfer. Dalton Trans. 2161–2168 (2006).

  7. Piro, N. A., Figueroa, J. S., McKellar, J. T. & Cummins, C. C. Triple-bond reactivity of diphosphorus molecules. Science 313, 1276–1279 (2006).

    CAS  PubMed  Google Scholar 

  8. Cossairt, B. M. & Cummins, C. C. A niobium-mediated cycle producing phosphorus-rich organic molecules from white phosphorus (P4) through activation, functionalization, and transfer reactions. Angew. Chem. Int. Ed. 47, 8863–8866 (2008).

    CAS  Google Scholar 

  9. Tofan, D. & Cummins, C. C. Photochemical incorporation of diphosphorus units into organic molecules. Angew. Chem. Int. Ed. 49, 7516–7518 (2010).

    CAS  Google Scholar 

  10. Scheer, M., Balázs, G. & Seitz, A. P4 activation by main group elements and compounds. Chem. Rev. 110, 4236–4256 (2010).

    CAS  PubMed  Google Scholar 

  11. Giffin, N. A. & Masuda, J. D. Reactivity of white phosphorus with compounds of the p-block. Coord. Chem. Rev. 255, 1342–1359 (2011).

    CAS  Google Scholar 

  12. Khan, S., Sen, S. S. & Roesky, H. W. Activation of phosphorus by group 14 elements in low oxidation states. Chem. Commun. 48, 2169–2179 (2012).

    CAS  Google Scholar 

  13. Holthausen, M. H. & Weigand, J. J. The chemistry of cationic polyphosphorus cages–syntheses, structure and reactivity. Chem. Soc. Rev. 43, 6639–6657 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Borger, J. E., Ehlers, A. W., Slootweg, J. C. & Lammertsma, K. Functionalization of P4 through direct P−C bond formation. Chem. Eur. J. 23, 11738–11746 (2017).

    CAS  PubMed  Google Scholar 

  15. Dorsey, C. L., Squires, B. M. & Hudnall, T. W. Isolation of a neutral P8 cluster by [2+2] cycloaddition of a diphosphene facilitated by carbene activation of white phosphorus. Angew. Chem. Int. Ed. 52, 4462–4465 (2013).

    CAS  Google Scholar 

  16. Rottschäfer, D., Blomeyer, S., Neumann, B., Stammler, H.-G. & Ghadwal, R. S. Direct functionalization of white phosphorus with anionic dicarbenes and mesoionic carbenes: facile access to 1,2,3-triphosphol-2-ides. Chem. Sci. 10, 11078–11085 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Peng, Y. et al. [{HC(CMeNAr)2}2Al2P4] (Ar = 2,6-iPr2C6H3): a reduction to a formal {P4}4− charged species. Angew. Chem. Int. Ed. 43, 3443–3445 (2004).

    CAS  Google Scholar 

  18. Fox, A. R., Wright, R. J., Rivard, E. & Power, P. P. Tl2[Aryl2P4]: a thallium complexed diaryltetraphosphabutadienediide and its two-electron oxidation to a diaryltetraphosphabicyclobutane, Aryl2P4. Angew. Chem. Int. Ed. 44, 7729–7733 (2005).

    CAS  Google Scholar 

  19. Back, O., Kuchenbeiser, G., Donnadieu, B. & Bertrand, G. Nonmetal-mediated fragmentation of P4: isolation of P1 and P2 bis(carbene) adducts. Angew. Chem. Int. Ed. 48, 5530–5533 (2009).

    CAS  Google Scholar 

  20. Masuda, J. D., Schoeller, W. W., Donnadieu, B. & Bertrand, G. Carbene activation of P4 and subsequent derivatization. Angew. Chem. Int. Ed. 46, 7052–7055 (2007).

    CAS  Google Scholar 

  21. Martin, C. D., Weinstein, C. M., Moore, C. E., Rheingold, A. L. & Bertrand, G. Exploring the reactivity of white phosphorus with electrophilic carbenes: synthesis of a P4 cage and P8 clusters. Chem. Commun. 49, 4486–4488 (2013).

    CAS  Google Scholar 

  22. Masuda, J. D., Schoeller, W. W., Donnadieu, B. & Bertrand, G. NHC-mediated aggregation of P4: isolation of a P12 cluster. J. Am. Chem. Soc. 129, 14180–14181 (2007).

    CAS  PubMed  Google Scholar 

  23. Xiong, Y., Yao, S., Brym, M. & Driess, M. Consecutive insertion of a silylene into the P4 tetrahedron: facile access to strained SiP4 and Si2P4 cage compounds. Angew. Chem. Int. Ed. 46, 4511–4513 (2007).

    CAS  Google Scholar 

  24. Alvarado-Beltran, I., Baceiredo, A., Saffon-Merceron, N., Branchadell, V. & Kato, T. Cyclic amino(ylide) silylene: a stable heterocyclic silylene with strongly electron-donating character. Angew. Chem. Int. Ed. 55, 16141–16144 (2016).

    CAS  Google Scholar 

  25. Sen, S. S. et al. Zwitterionic Si-C-Si-P and Si-P-Si-P four-membered rings with two-coordinate phosphorus atoms. Angew. Chem. Int. Ed. 50, 2322–2325 (2011).

    CAS  Google Scholar 

  26. Khan, S., Michel, R., Sen, S. S., Roesky, H. W. & Stalke, D. A P4 chain and cage from silylene-activated white phosphorus. Angew. Chem. Int. Ed. 50, 11786–11789 (2011).

    CAS  Google Scholar 

  27. Driess, M., Fanta, A. D., Powell, D. R. & West, R. Synthesis, characterization, and complexation of an unusual P2Si2 bicyclobutane with butterfly-structure: 2,2,4,4-tetramesityl-1,3-diphospha-2,4-disilabicyclo[1.1.0]butane. Angew. Chem. lnt. Ed. Engl. 28, 1038–1040 (1989).

    Google Scholar 

  28. Wang, Y. et al. Carbene-stabilized diphosphorus. J. Am. Chem. Soc. 130, 14970–14971 (2008).

    CAS  PubMed  Google Scholar 

  29. Bock, H. & Müller, H. Gas-phase reactions. 44. The P4 ↔ 2P2 equilibrium visualized. Inorg. Chem. 23, 4365–4368 (1984).

    CAS  Google Scholar 

  30. Kornath, A., Kaufmann, A. & Torheyden, M. Raman spectroscopic studies on matrix isolated phosphorus molecules P4 and P2. J. Chem. Phys. 116, 3323–3326 (2002).

    CAS  Google Scholar 

  31. Rottschäfer, D. et al. A phosphorus analogue of p-quinodimethane with a planar P4 ring: a metal-free diphosphorus source. Chem. Eur. J. 25, 3244–3247 (2019).

    PubMed  Google Scholar 

  32. Wang, Y., Kostenko, A., Yao, S. & Driess, M. Divalent silicon-assisted activation of dihydrogen in a bis(N-heterocyclic silylene)xanthene nickel(0) complex for efficient catalytic hydrogenation of olefin. J. Am. Chem. Soc. 139, 13499–13506 (2017).

    CAS  PubMed  Google Scholar 

  33. Wang, Y. et al. Silicon-mediated selective homo- and heterocoupling of carbon monoxide. J. Am. Chem. Soc. 141, 626–634 (2019).

    CAS  PubMed  Google Scholar 

  34. Wang, Y., Karni, M., Yao, S., Apeloig, Y. & Driess, M. An isolable bis(silylene)-stabilized germylone and its reactivity. J. Am. Chem. Soc. 141, 1655–1664 (2019).

    PubMed  Google Scholar 

  35. Wang, Y. et al. Synthesis of an isolable bis(silylene)-stabilized silylone and its reactivity toward small gaseous molecules. J. Am. Chem. Soc. 141, 12916–12927 (2019).

    CAS  PubMed  Google Scholar 

  36. Tondreau, A. M., Benkő, Z., Harmerb, J. R. & Grützmacher, H. Sodium phosphaethynolate, Na(OCP), as a “P” transfer reagent for the synthesis of N-heterocyclic carbene supported P3 and PAsP radicals. Chem. Sci. 5, 1545–1554 (2014).

    CAS  Google Scholar 

  37. Heift, D., Benkő, Z. & Grützmacher, H. Redox-triggered reversible interconversion of a monocyclic and a bicyclic phosphorus heterocycle. Angew. Chem. Int. Ed. 53, 6757–6761 (2014).

    CAS  Google Scholar 

  38. Suter, R. et al. 2,4,6-Tri(hydroxy)-1,3,5-triphosphinine, P3C3(OH)3: the phosphorus analogue of cyanuric acid. Angew. Chem. Int. Ed. 56, 1356–1360 (2017).

    CAS  Google Scholar 

  39. Jupp, A. R. & Goicoechea, J. M. Phosphinecarboxamide: a phosphorus-containing analogue of urea and stable primary phosphine. J. Am. Chem. Soc. 135, 19131–19134 (2013).

    CAS  PubMed  Google Scholar 

  40. Goicoechea, J. M. & Grützmacher, H. The chemistry of the 2-phosphaethynolate anion. Angew. Chem. Int. Ed. 57, 16968–16994 (2018).

    CAS  Google Scholar 

  41. Puschmann, F. F. et al. Phosphination of carbon monoxide: a simple synthesis of sodium phosphaethynolate (NaOCP). Angew. Chem. Int. Ed. 50, 8420–8423 (2011).

    CAS  Google Scholar 

  42. Suter, R., Benkö, Z., Bispinghoff, M. & Grützmacher., H. Annulated 1,3,4-azadiphospholides: heterocycles with widely tunable optical properties. Angew. Chem. Int. Ed. 56, 11226–11231 (2017).

    CAS  Google Scholar 

  43. Benedek, Z. & Szilvási, T. Can low-valent silicon compounds be better transition metal ligands than phosphines and NHCs? RSC Adv. 5, 5077–5086 (2015).

    CAS  Google Scholar 

  44. Hersh, W. H. False AA′X spin−spin coupling systems in 13C NMR: examples involving phosphorus and a 20-year-old mystery in off-resonance decoupling. J. Chem. Educ. 74, 1485–1488 (1997).

    CAS  Google Scholar 

  45. Driess, M., Rell, S., Pritzkow, H. & Janoschek, R. R2Si=P−SiR2F: 1,3-sigmatropic migration of fluorine in a 2-phospha-l,3-disilaallyl derivative capable of conjugation and its conversion to phosphadisilacyclopropanes. Angew. Chem. Int. Ed. Engl. 36, 1326–1329 (1997).

    CAS  Google Scholar 

  46. Lee, V. Y. A., Kawai, M., Sekiguchi, A., Ranaivonjatovo, H. & Escudié, J. A “push–pull” phosphasilene and phosphagermene and their anion-radicals. Organometallics 28, 4262–4265 (2009).

    CAS  Google Scholar 

  47. Back, O., Donnadieu, B., Parameswaran, P., Frenking, G. & Bertrand, G. Isolation of crystalline carbene-stabilized P2-radical cations and P2-dications. Nat. Chem. 2, 369–373 (2010).

    CAS  PubMed  Google Scholar 

  48. Szilvási, T. & Veszprémi, T. Why do N-heterocyclic carbenes and silylenes activate white phosphorus differently? Struct. Chem. 26, 1335–1342 (2015).

    Google Scholar 

  49. Szilvási, T. & Veszprémi, T. On the mechanism of the reaction of white phosphorus with silylenes. Dalton Trans. 40, 7193–7200 (2011).

    PubMed  Google Scholar 

  50. Sakakura, T., Choi, J.-C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    CAS  PubMed  Google Scholar 

  51. Mömming, C. M. et al. Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew. Chem. Int. Ed. 48, 6643–6646 (2009).

    Google Scholar 

  52. Ellis, B. D., Dyker, C. A., Decken, A. & Macdonald, C. L. B. The synthesis, characterisation and electronic structure of N-heterocyclic carbene adducts of PI cations. Chem. Commun., 1965–1967 (2005)

  53. Ellis, B. D. & Macdonald, C. L. B. Phosphorus(I) iodide: a versatile metathesis reagent for the synthesis of low oxidation state phosphorus compounds. Inorg. Chem. 45, 6864–6874 (2006).

    CAS  PubMed  Google Scholar 

  54. Yao, S. et al. Facile access to NaOC≡As and its use as an arsenic source to form germylidenylarsinidene complexes. Angew. Chem. Int. Ed. 56, 7465–7469 (2017).

    CAS  Google Scholar 

  55. Yao, S., Xiong, Y., Szilvási, T., Grützmacher, H. & Driess, M. From a phosphaketenyl-functionalized germylene to 1,3-digerma-2,4-diphosphacyclobutadiene. Angew. Chem. Int. Ed. 55, 4781–4785 (2016).

    CAS  Google Scholar 

  56. Buhling, A. et al. Novel amphiphilic diphosphines: synthesis, X-ray structure, rhodium complexes, use in hydroformylation, and rhodium recycling. Organometallics 16, 3027–3037 (1997).

    CAS  Google Scholar 

  57. Sen, S. S., Roesky, H. W., Stern, D., Henn, J. & Stalke, D. High yield access to silylene RSiCl (R = PhC(NtBu)2) and its reactivity toward alkyne: synthesis of stable disilacyclobutene. J. Am. Chem. Soc. 132, 1123–1126 (2010).

    CAS  PubMed  Google Scholar 

  58. Nagendran, S. et al. RGe(I)Ge(I)R compound (R = PhC(NtBu)2) with a Ge−Ge single bond and a comparison with the gauche conformation of hydrazine. Organometallics 27, 5459–5463 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Nixdorf for assistance with the X-ray diffraction measurements. This work was financially supported by the Deutsche Forschungsgemeinschaft (DR 226/19-2) (Germany’s Excellence Strategy−EXC 2008/1-390540038 (UniSysCat)). Y.W. acknowledges financial support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and Y.W. conceived and designed the experiments. Y.W. carried out the synthetic experiments and analysed the experimental data. T.S. performed the theoretical calculations. Y.W. and S.Y. conducted the crystallographic studies. M.D., Y.W. and T.S. wrote the manuscript. M.D. supervised the study. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Matthias Driess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Natural Resonance Theory analysis for the surrogates of A, B and 2.

a, Natural Resonance Theory analysis for surrogate of A. Bulky substituents of the cAAC ligand are replaced by hydrogens. Resonance structures with more than 1 weight percent is shown. b, Natural Resonance Theory analysis for surrogate of B. Bulky substituents of the NHC ligand are replaced by hydrogens. No covalent reference structure was found thus NRT analysis was not successful and these results could implicitly point to the importance of donor-acceptor reference structure. c, Natural Resonance Theory analysis for surrogate of 2. Ph and tBu substituents of the amidinate ligand are replaced by hydrogens and the xanthene backbone were replaced by two methyl groups. No covalent reference structure was found thus NRT analysis was not successful and these results could implicitly point to the importance of donor-acceptor reference structure.

Extended Data Fig. 2 DFT-derived mechanism of P4 activation by 1 leading to 2.

In the initial step, the lone pair of electrons at one silylene group induce the cage-opening in P4 to give the intermediate D. Then, the other silylene moiety in 1 interacts with the P = P bond affording compound E, which can further react with one molecule of 1 to form the branched intermediate F. As bis(silylene) 1 involves another reactive silylene moiety in close proximity, the reaction can go further to fragment the P4 moiety resulting in the bis(NHSi)-supported P2 complex 2.

Supplementary information

Supplementary Information

General considerations, synthetic procedures, compound characterization data including spectroscopic and analytical data for all new compounds, NMR spectra, single-crystal X-ray crystallographic data, computational details containing Cartesian coordinates of computational structures, Supplementary Figs. 1–54, Tables 1–45 and references 1–11.

Supplementary Data 1

CIF for compound 2; CCDC reference: 1978612.

Supplementary Data 2

CIF for compound 3; CCDC reference: 1978615.

Supplementary Data 3

CIF for compound 4; CCDC reference: 1978613.

Supplementary Data 4

CIF for compound 5; CCDC reference: 1978616.

Supplementary Data 5

CIF for compound 6; CCDC reference: 1978614.

Supplementary Data 6

CIF for compound 7; CCDC reference: 1978617.

Supplementary Data 7

CIF for compound 8; CCDC reference: 1978618.

Supplementary Data 8

CIF for compound 9; CCDC reference: 1978619.

Supplementary Data 9

CIF for compound 10; CCDC reference: 1978620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Szilvási, T., Yao, S. et al. A bis(silylene)-stabilized diphosphorus compound and its reactivity as a monophosphorus anion transfer reagent. Nat. Chem. 12, 801–807 (2020). https://doi.org/10.1038/s41557-020-0518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0518-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing