Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nickel-catalysed hydrodimerization of unactivated terminal alkenes

Abstract

Site-selective homo- and cross-hydrodimerization of terminal alkenes has remained a long-standing challenge in organic synthesis. Metal-hydride-catalysed selective dimerization, oligomerization or polymerization methods are often limited to electronically biased or small alkene substrates. Here we report the development of a nickel-catalysed protocol that enables selective homo- and cross-dimerization of unactivated linear and sterically congested terminal alkenes to afford linear alkyl‒alkyl products in good yields and high linear/branched selectivity. The process is tolerant of a range of functionalities including heteroatoms, saturated heterocycles and bioactive motifs. Mechanistic experiments reveal that the co-oxidants we used, CuBr2 and di-tert-butyl peroxide, probably convert dialkyl‒Ni(II) intermediates to the corresponding Ni(III) species through a single-electron-transfer process. This oxidative step avoids decomposition of thermally labile dialkyl‒Ni(II) intermediates and promotes the formation of hydrodimerization products by reductive elimination of the Ni(III) complex. Without CuBr2, high branched selectivity was achieved, affording the methyl-branched products—which are typically difficult to synthesize—in good yields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MH-catalysed alkene dimerization and nickel-catalysed linear hydrodimerization.
Fig. 2: Linear and methyl-branched hydrodimerization of terminal alkenes.
Fig. 3: The mechanistic studies and proposals for the hydrodimerization of terminal alkenes.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Cornils, B. & Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Three Volumes (Wiley, 2002).

  2. Liu, P. & Ai, C. Olefin metathesis reaction in rubber chemistry and industry and beyond. Ind. Eng. Chem. Res. 57, 3807–3820 (2018).

    Article  CAS  Google Scholar 

  3. Matsuo, T. Functionalization of ruthenium olefin-metathesis catalysts for interdisciplinary studies in chemistry and biology. Catalysts 11, 359–383 (2021).

    Article  CAS  Google Scholar 

  4. Claverie, J. P. & Schaper, F. Ziegler–Natta catalysis: 50 years after the Nobel Prize. MRS Bull. 38, 213–218 (2013).

    Article  CAS  Google Scholar 

  5. Chen, C. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat. Rev. Chem. 2, 6–14 (2018).

    Article  CAS  Google Scholar 

  6. Ittel, S. D., Johnson, L. K. & Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 100, 1169–1204 (2000).

    Article  CAS  Google Scholar 

  7. Broene, R. D., Brookhart, M., Lamanna, W. M. & Volpe, A. F. Jr. Cobalt-catalyzed dimerization of α-olefins to give linear α-olefin products. J. Am. Chem. Soc. 127, 17194–17195 (2005).

    Article  CAS  Google Scholar 

  8. Johnson, L. K. et al. New Pd(II)- and Ni(II)- based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc. 117, 6414–6415 (1995).

    Article  CAS  Google Scholar 

  9. Hou, W. et al. Double-linear insertion mode of α,ω-dienes enabled by thio-iminoquinoline iron catalyst. ACS Catal. 10, 15092–15103 (2020).

    Article  CAS  Google Scholar 

  10. Vaidya, T. et al. Secondary alkene insertion and precision chain-walking: a new route to semicrystalline “polyethylene” from α‑olefins by combining two rare catalytic events. J. Am. Chem. Soc. 136, 7213–7216 (2014).

    Article  CAS  Google Scholar 

  11. Hirano, M. Recent advances in the catalytic linear cross-dimerizations. ACS Catal. 9, 1408–1430 (2019).

    Article  CAS  Google Scholar 

  12. Skupińska, J. Oligomerization of α-olefins to higher oligomers. Chem. Rev. 91, 613–648 (1991).

    Article  Google Scholar 

  13. Olivier-Bourbigou, H. et al. Nickel catalyzed olefin oligomerization and dimerization. Chem. Rev. 120, 7919–7983 (2020).

    Article  CAS  Google Scholar 

  14. Leatherman, M. D., Svejda, S. A., Johnson, L. K. & Brookhart, M. Mechanistic studies of nickel(II) alkyl agostic cations and alkyl ethylene complexes: investigations of chain propagation and isomerization in (r-diimine)Ni(II)-catalyzed ethylene polymerization. J. Am. Chem. Soc. 125, 3068–3081 (2003).

    Article  CAS  Google Scholar 

  15. Hilt, G. Hydrovinylation reactions-atom-economic transformations with steadily increasing synthetic potential. Eur. J. Org. Chem. 15, 4441–4451 (2012).

    Article  Google Scholar 

  16. RajanBabu, T. V. Asymmetric hydrovinylation reaction. Chem. Rev. 103, 2845–2860 (2003).

    Article  CAS  Google Scholar 

  17. Lo, J. C., Gui, J., Yabe, Y., Pan, C.-M. & Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516, 343–348 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  18. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  19. Isakov, V. E. & Kulinkovich, O. G. The head-to-head reductive coupling of homoallylic alcohols promoted by titanium(II)–olefin complexes. Synlett 7, 967–970 (2003).

    Google Scholar 

  20. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, 152–160 (2017).

    Article  CAS  Google Scholar 

  21. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation–olefin metathesis. Science 312, 257–260 (2006).

    Article  CAS  Google Scholar 

  22. Dry, M. E. High quality diesel via the Fischer-Tropsch process-a review. J. Chem. Technol. Biotechnol. 77, 43–50 (2001).

    Article  Google Scholar 

  23. Zecevic, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  24. Eagan, J. M. et al. Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science 355, 814–816 (2017).

    Article  CAS  Google Scholar 

  25. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  26. Zhou, J. S. & Fu, G. C. Cross-couplings of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc. 125, 14726–14727 (2003).

    Article  CAS  Google Scholar 

  27. Jones, G. D. et al. Ligand redox effects in the synthesis, electronic structure, and reactivity of an alkyl–alkyl cross-coupling catalyst. J. Am. Chem. Soc. 128, 13175–13183 (2006).

    Article  CAS  Google Scholar 

  28. Xu, H., Zhao, C., Qian, Q., Deng, W. & Gong, H. Nickel-catalyzed cross-coupling of unactivated alkyl halides using bis(pinacolato)diboron as reductant. Chem. Sci. 4, 4022–4029 (2013).

    Article  CAS  Google Scholar 

  29. Maity, B. et al. L. Cavallo. Mechanistic insight into the photoredox-nickel-HAT triple catalyzed arylation and alkylation of α-amino Csp3–H bonds. J. Am. Chem. Soc. 142, 16942–16952 (2020).

    Article  CAS  Google Scholar 

  30. Green, S. A., Huffman, T. R., McCourt, R. O., van der Puyl, V. & Shenvi, R. A. Hydroalkylation of olefins to form quaternary carbons. J. Am. Chem. Soc. 141, 7709–7714 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  31. Lu, X. et al. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun. 7, 11129–11136 (2016).

    Article  PubMed Central  Google Scholar 

  32. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  33. Bera, S. et al. C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis. Nat. Chem. 13, 270–277 (2021).

    Article  CAS  Google Scholar 

  34. Janssen-Müller, D., Sahoo, B., Sun, S.-Z. & Martin, R. Tackling remote sp3 C−H functionalization via Ni-catalyzed “chain-walking” reactions. Isr. J. Chem. 60, 195–206 (2020).

    Article  Google Scholar 

  35. Zhou, F., Zhu, J., Zhang, Y. & Zhu, S. NiH-catalyzed reductive relay hydroalkylation: a strategy for the remote C(sp3)–H alkylation of alkenes. Angew. Chem. Int. Ed. 57, 4058–4062 (2018).

    Article  CAS  Google Scholar 

  36. Black, S. I. & Young, G. B. Synthesis and spectroscopic characteristics of 2-methyl-2-phenylpropye and dimethyl(phenyl)silylmethylnickel(II) complexes. Polyhedron 8, 585–596 (1989).

    Article  CAS  Google Scholar 

  37. Saito, T. et al. Diethyldipyridylnickel. Preparation, characterization, and reactions. J. Am. Chem. Soc. 88, 5198–5201 (1966).

    Article  CAS  Google Scholar 

  38. Pires, A. P. P., Han, Y., Kramlich, J. & Garcia-Perez, M. Chemical composition and fuel properties of alternative jet fuels. BioResources 13, 2632–2657 (2018).

    Article  CAS  Google Scholar 

  39. O’Doherty, I., Yim, J. J., Schmelz, E. A. & Schroeder, F. C. Synthesis of caeliferins, elicitors of plant immune responses: accessing lipophilic natural products via cross metathesis. Org. Lett. 13, 5900–5903 (2011).

    Article  PubMed Central  Google Scholar 

  40. Nakamura, H., Schultz, E. E. & Balskus, E. P. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nat. Chem. Biol. 13, 916 (2017).

    Article  CAS  Google Scholar 

  41. Yamamoto, T., Kohara, T. & Yamamoto, A. Preparation and properties of monoalkylnickel(II) complexes having a phenoxo, benzenethiolato, oximato, β-diketonato, or halo ligand. Bull. Chem. Soc. Jpn. 54, 2010–2016 (1981).

    Article  CAS  Google Scholar 

  42. Yamaguchi, Y., Ichioka, H., Klein, A., Brennessel, W. W. & Vicic, D. A. Linear bis(perfluoroalkyl) complexes of nickel bipyridine. Organometallics 31, 1477–1483 (2012).

    Article  CAS  Google Scholar 

  43. Gao, Y. et al. Visible-light-induced nickel-catalyzed cross-coupling with alkylzirconocenes from unactivated alkenes. Chem 6, 675–688 (2020).

    Article  CAS  Google Scholar 

  44. Beromi, M. M., Brudvig, G. W., Hazari, N., Lant, H. M. C. & Mercado, B. Q. Synthesis and reactivity of paramagnetic nickel polypyridyl complexes relevant to C(sp2)–C(sp3) coupling reactions. Angew. Chem. Int. Ed. 58, 6094–6098 (2019).

    Article  Google Scholar 

  45. Gephart, R. T. III et al. Reaction of CuI with dialkyl peroxides: CuII-alkoxides, alkoxy radicals, and catalytic C–H etherification. J. Am. Chem. Soc. 134, 17350–17353 (2012).

    Article  CAS  Google Scholar 

  46. Deutsch, C., Krause, N. & Lipshutz, B. H. CuH-catalyzed reactions. Chem. Rev. 108, 2916–2927 (2008).

    Article  CAS  Google Scholar 

  47. Wang, K., Ding, Z., Zhou, Z. & Kong, W. Ni-catalyzed enantioselective reductive diarylation of activated alkenes by domino cyclization/cross-coupling. J. Am. Chem. Soc. 140, 12364–12368 (2018).

    Article  CAS  Google Scholar 

  48. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  49. Yao, C., Wang, S., Norton, J. & Hammond, M. Catalyzing the hydrodefluorination of CF3-substituted alkenes by PhSiH3. H· transfer from a nickel hydride. J. Am. Chem. Soc. 142, 4793–4799 (2020).

  50. Guo, J., Zhang, D. & Wang, X. Mechanistic insights into Ni-catalyzed hydrogen atom transfer (HAT)-triggered hydrodefluorination of CF3-substituted alkenes. Dalton Trans. 50, 9026–9030 (2021).

    Article  CAS  Google Scholar 

  51. Paquin, A., Reyes-Moreno, C. & Bérubé, G. Recent advances in the use of the dimerization strategy as a means to increase the biological potential of natural or synthetic molecules. Molecules 26, 2340–2370 (2021).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (21871173). We thank J.L. Sessler (University of Texas), D. Vicic (Lehigh University) and X. Lu (USTC, China) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.G. designed the project and drafted the manuscript. L.C. and J.L. performed the experiments and contributed equally. Y.C. conducted mass spectroscopic studies. All the authors participated in the preparation of the manuscript.

Corresponding author

Correspondence to Hegui Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–21, Tables 1–6, discussion and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Liu, J., Chen, Y. et al. Nickel-catalysed hydrodimerization of unactivated terminal alkenes. Nat. Synth 2, 364–372 (2023). https://doi.org/10.1038/s44160-023-00239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00239-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing