Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of noble/non-noble metal alloy nanostructures via an active-hydrogen-involved interfacial reduction strategy

Abstract

Traditional solution-phase synthesis of noble/non-noble metal alloy nanocrystals lacks control over metal co-reduction due to the difference in reduction potentials. As a result, these synthetic routes lead to constrained compositional space. To address this problem, we have developed an active-hydrogen (H*)-involved interfacial reduction method for the synthesis of alloy nanostructures. The introduction of HNO2 into the reaction generates H* at the metal seed/solution interface, creating a highly reducing environment. Metal reduction, therefore, migrates from the solution phase to the interface, and H*, as a strong reducing agent, can negate the effect of the reduction potential differences of metal salts, leading to their effective co-reduction. We demonstrate the synthesis of a library of Pt–M alloy nanoshells (M = Fe, Co, Ni, Ga, In, Sn, Pb, Bi) on palladium octahedral cores with precise compositional control, enabling screening of the materials as catalysts for the hydrogen evolution reaction. This strategy paves a way for noble/non-noble metal alloy nanostructures with superior synthetic control for a broad range of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interfacial synthesis of Pt–Ni alloy nanoshells on octahedral Pd nanocrystals.
Fig. 2: Cs-corrected high-resolution electron microscopy characterizations of the octahedral Pd@Pt–Ni alloy core–shell nanocrystals.
Fig. 3: The active H*-involved interfacial reduction mechanism for the precise synthesis of Pt–Ni alloy nanoshells.
Fig. 4: Library synthesis of octahedral Pd@Pt–M alloy core–shell nanocrystals.
Fig. 5: Electrochemical performance of the octahedral Pd@Pt–Ni alloy core–shell nanocrystals in the alkaline HER.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the main text or Supplementary Information. Source data are provided with this paper.

References

  1. Zhou, M., Li, C. & Fang, J. Y. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem. Rev. 121, 736–795 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Loza, K., Heggen, M. & Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater. 30, 1909260 (2020).

    Article  CAS  Google Scholar 

  3. Rossmeisl, J. et al. Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ. Sci. 5, 8335–8342 (2012).

    Article  CAS  Google Scholar 

  4. Tedsree, K. et al. Hydrogen production from formic acid decomposition at room temperature using Ag–Pd core–shell nanocatalyst. Nat. Nanotechnol. 6, 302–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Skrabalak, S. E. Mashing up metals with carbothermal shock. Science 359, 1467–1467 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, Y. W., Ahn, H., Lee, S. E., Woo, H. & Han, S. W. Fine control over the compositional structure of trimetallic core–shell nanocrystals for enhanced electrocatalysis. ACS Appl. Mater. Interfaces 11, 25901–25908 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Scofield, M. E. et al. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions. ACS Catal. 6, 3895–3908 (2016).

    Article  CAS  Google Scholar 

  9. Scofield, M. E., Koenigsmann, C., Wang, L., Liu, H. & Wong, S. S. Tailoring the composition of ultrathin, ternary alloy ptrufe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 8, 350–363 (2015).

    Article  CAS  Google Scholar 

  10. Liu, H., Koenigsmann, C., Adzic, R. R. & Wong, S. S. Probing ultrathin one-dimensional Pd–Ni nanostructures as oxygen reduction reaction catalysts. ACS Catal. 4, 2544–2555 (2014).

    Article  CAS  Google Scholar 

  11. Xu, Y. et al. Facile one-step room-temperature synthesis of Pt3Ni nanoparticle networks with improved electro-catalytic properties. Chem. Commun. 48, 2665–2667 (2012).

    Article  CAS  Google Scholar 

  12. Zhang, J. & Fang, J. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 131, 18543–18547 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Xie, M. et al. Pt–Co@Pt octahedral nanocrystals: enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 143, 8509–8518 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, J., Gross, A. & Yang, H. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 11, 798–802 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Choi, S.-I. et al. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Bu, L. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Tian, X. et al. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Feng, Y. et al. On-demand, ultraselective hydrogenation system enabled by precisely modulated Pd–Cd nanocubes. J. Am. Chem. Soc. 142, 962–972 (2019).

    Article  Google Scholar 

  19. Luo, S. & Shen, P. K. Concave platinum–copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 11, 11946–11953 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Cao, Z. et al. Platinum–nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 8, 15131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bu, L. Z. et al. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 139, 9576–9582 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Chang, Q. W. et al. Structural evolution of sub-10 nm octahedral platinum–nickel bimetallic nanocrystals. Nano Lett. 17, 3926–3931 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Bu, L. et al. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 27, 7204–7212 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, K. et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 3, e1601705 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mao, J. et al. Design of ultrathin Pt–Mo–Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 3, e1603068 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, K. et al. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 140, 16159–16167 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Luo, M. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 30, 1705515 (2018).

    Article  Google Scholar 

  28. Zhao, Y. P. et al. High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis. Small 15, 1900288 (2019).

    Article  Google Scholar 

  29. Yan, Y. et al. Epitaxial growth of multimetallic Pd@PtM (M = Ni, Rh, Ru) core–shell nanoplates realized by in situ-produced CO from interfacial catalytic reactions. Nano Lett. 16, 7999–8004 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, X. et al. Octahedral Pd@Pt1.8Ni core–shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 137, 2804–2807 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Choi, S.-I. et al. Synthesis and characterization of Pd@Pt–Ni core–shell octahedra with high activity toward oxygen reduction. ACS Nano 8, 10363–10371 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Z. et al. Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew. Chem. Int. Ed. 57, 11678–11682 (2018).

    Article  CAS  Google Scholar 

  33. Abrantes, L. M. & Correia, J. P. On the mechanism of electroless Ni–P plating. J. Electrochem. Soc. 141, 2356–2360 (1994).

    Article  CAS  Google Scholar 

  34. Armstrong, D. A. et al. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 87, 1139–1150 (2015).

    Article  CAS  Google Scholar 

  35. Jin, M. et al. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 4, 83–91 (2010).

    Article  CAS  Google Scholar 

  36. Haynes, W. M. CRC Handbook of Chemistry and Physics, 97 edn (CRC Press, 2017).

  37. Xia, Y., Gilroy, K. D., Peng, H. C. & Xia, X. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 129, 60–98 (2017).

    Article  Google Scholar 

  38. Gilroy, K. D. et al. Shape-controlled synthesis of colloidal metal nanocrystals by replicating the surface atomic structure on the seed. Adv. Mater. 105, 1706312 (2018).

    Article  Google Scholar 

  39. Wang, G. et al. Island growth in the seed-mediated overgrowth of monometallic colloidal nanostructures. Chem 3, 678–690 (2017).

    Article  CAS  Google Scholar 

  40. Zheng, Y., Jiao, Y., Vasileff, A. & Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018).

    Article  CAS  Google Scholar 

  41. Zhu, J., Hu, L., Zhao, P., Lee, L. Y. S. & Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Xia, X. et al. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc. Natl Acad. Sci. USA 110, 6669–6673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi, Y. et al. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 144, 2556–2568 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, Z. et al. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 137, 15672–15675 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, G. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 143, 11262–11270 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Greeley, J., Nørskov, J. K., Kibler, L. A., El-Aziz, A. M. & Kolb, D. M. Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem 7, 1032–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, S. & Zhuang, Z. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 139, 5156–5163 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Kobayashi, H., Kusada, K. & Kitagawa, H. Creation of novel solid-solution alloy nanoparticles on the basis of density-of-states engineering by interelement fusion. Acc. Chem. Res. 48, 1551–1559 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22071191), the Key Research and Development Projects of Shaanxi Province (2021GXLH-Z-022), the Key Scientific and Technological Innovation Team of Shaanxi Province (2020TD-001) and the Fundamental Research Funds for the Central Universities. We thank ShanghaiTech University and the Center for High-resolution Electron Microscopy (CћEM) through EM-19430216 for support with the spherical-aberration-corrected HR-STEM analysis and the Instrument Analysis Center of Xi’an Jiaotong University for assistance with the ICP-MS measurements. We thank S. Shen and R. Wang at Xi’an Jiaotong University for their help with the EPR.

Author information

Authors and Affiliations

Authors

Contributions

C.G. conceived the idea and supervised the project. Z.L. performed the synthesis, characterization and electrocatalysis. Y.J. and Q.Z. conducted atomic-resolution electron microscopy of the materials. Z.Z., X.W., K.L., Z.Q., M.L., S.Z. and Z.M. assisted with the materials synthesis and characterizations. Z.L. and C.G. wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Chuanbo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Tables 1–4.

Source data

Source Data Fig. 3

Mass spectra and GC spectra of gaseous products from the synthesis; the Ni/Pt ratios in the alloy nanocrystals, plotted against the concentration of NaNO2 and the Ni/Pt ratios in the synthesis precursors.

Source Data Fig. 5

Electrochemical performance data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Jiang, Y., Zhang, Z. et al. Synthesis of noble/non-noble metal alloy nanostructures via an active-hydrogen-involved interfacial reduction strategy. Nat. Synth 2, 119–128 (2023). https://doi.org/10.1038/s44160-022-00217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00217-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing