Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general synthesis of single atom catalysts with controllable atomic and mesoporous structures

Abstract

The control of single metal atomic sites has been extensively studied in the field of single atom catalysts. By contrast, the precise control of the mesoporous structure in the matrix material, which directly correlates with mass diffusions and may play a dominant role in delivering industrially relevant reaction rates, has been overlooked. Here we report a general method for the synthesis of a single atom catalyst with control of the atomic structure of the single atomic site as well as the mesoporous structure of the carbon support for optimized catalytic performance. Various combinations of metal centres (Ni, Co, Mn, Zn, Cu, Sc and Fe) and mass diffusion channels in two dimensions and three dimensions were achieved. Using CO2 reduction to CO as an example, our Ni single atom catalyst with three-dimensional diffusion channels delivered a practical current of 350 mA cm−2 while maintaining a 93% CO Faradaic efficiency, representing a sixfold improvement in turnover frequency compared to two-dimensional counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis strategy of M-SACs.
Fig. 2: Microscopic characterizations of Ni-SACs synthesized by using different hard templates.
Fig. 3: Fine structure of Ni-SACs.
Fig. 4: Aberration-corrected MAADF/HAADF-STEM images of various SACs.
Fig. 5: Electrochemical CO2RR performance of M-SACs in a flow cell set-up using 1.0 M KHCO3 electrolyte.
Fig. 6: Electrochemical CO2RR performance of 3D-Ni-SAC in an anion MEA cell.

Similar content being viewed by others

Data availability

The data supporting the findings of the study are available in the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, X.-F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016).

    Article  CAS  Google Scholar 

  4. Li, Z. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 12, 764–772 (2020).

    Article  PubMed  CAS  Google Scholar 

  5. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Malta, G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1403 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  8. Qu, Y. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018).

    Article  CAS  Google Scholar 

  9. Wang, Y. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 120, 12217–12314 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Yao, Y. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, J. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021).

    Article  PubMed  Google Scholar 

  12. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    Article  CAS  Google Scholar 

  13. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  14. Ji, S. et al. Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Fei, H. et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48, 5207–5241 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Li, X. et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6, eabb6833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, Y. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019).

    Article  CAS  Google Scholar 

  18. Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, W. et al. Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 139, 10790–10798 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, Y. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 4, 134–143 (2021).

    Article  CAS  Google Scholar 

  22. Huang, F. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 10, 4431 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  24. Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    Article  CAS  Google Scholar 

  25. Zhao, C. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3, 584–594 (2019).

    Article  CAS  Google Scholar 

  26. Zhao, C. et al. Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Hou, Y. et al. Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li, J. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018).

    Article  CAS  Google Scholar 

  29. Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Kaiser, S. K., Chen, Z., Faust Akl, D., Mitchell, S. & Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Pan, Y. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Liang, H.-W., Wei, W., Wu, Z.-S., Feng, X. & Müllen, K. Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135, 16002–16005 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Sun, T. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl Acad. Sci. USA 115, 12692–12697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, L. et al. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 5, eaax6322 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. He, X. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 10, 3663 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wei, H. et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang, Z. et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 11, 1215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, H. et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 10, 4585 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhao, L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10, 1278 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jin, S. et al. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem. Int. Ed. 59, 21885–21889 (2020).

    Article  CAS  Google Scholar 

  42. Zhang, J. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 141, 20118–20126 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, Y. et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 11, 5892 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao, S. et al. High-loading single Pt atom sites [Pt-O(OH)x] catalyze the CO PROX reaction with high activity and selectivity at mild conditions. Sci. Adv. 6, eaba3809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiao, L. et al. Single-atom electrocatalysts from multivariate metal–organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 59, 20589–20595 (2020).

    Article  CAS  Google Scholar 

  46. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, Z.-Y. et al. Transition metal–assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 4, eaat0788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang, K. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017).

    Article  CAS  Google Scholar 

  49. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  52. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Gao, D. et al. Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 139, 5652–5655 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Dinh, C.-T., García de Arquer, F. P., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    Article  CAS  Google Scholar 

  55. Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Su, J. et al. Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrially relevant current. Energy Environ. Sci. 14, 483–492 (2021).

    Article  CAS  Google Scholar 

  57. Cheng, Y. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30, 1706287 (2018).

    Article  CAS  Google Scholar 

  58. Yang, F. et al. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57, 12303–12307 (2018).

    Article  CAS  Google Scholar 

  59. Won, D. H. et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem. Int. Ed. 55, 9297–9300 (2016).

    Article  CAS  Google Scholar 

  60. Jiang, K., Wang, H., Cai, W.-B. & Wang, H. Li electrochemical tuning of metal oxide for highly selective CO2 reduction. ACS Nano 11, 6451–6458 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. He, R. et al. Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction. Adv. Mater. 30, 1705872 (2018).

    Article  CAS  Google Scholar 

  62. Venkatakrishnan, S. V. et al. A model based iterative reconstruction algorithm for high angle annular dark field-scanning transmission electron microscope (HAADF-STEM) tomography. IEEE Trans. Image Process. 22, 4532–4544 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Venkatakrishnan, S. V. et al. Model-based iterative reconstruction for bright-field electron tomography. IEEE Trans. Comput. Imaging 1, 1–15 (2015).

    Article  Google Scholar 

  64. Wu, Z.-Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Welch Foundation Research Grant (C-2051-20200401, H.W.), the Roy E. Campbell Faculty Development Award and Rice University. Aberration-corrected STEM-EELS and electron tomography research conducted as part of a user project at the Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. The XAS data were collected at SXRMB of the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), Canadian Institutes of Health Research (CIHR), Government of Saskatchewan and the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Contributions

Z.-Y.W. and H.W. conceptualized the project. H.W. supervised the project. Z.-Y.W. developed and performed the catalyst synthesis. Z.-Y.W., P.Z., D.A.C., Y. H., Q.-Q.Y., S.-C.S, F.-Y.C., H.Y., M.S., J.D.A.-M., A.Z., A.P. and H.-W.L. carried out the materials characterization. Z.-Y.W. and P.Z. conducted the catalytic tests of catalysts and the related data processing. Z.-Y.W., P.Z. and H.W. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Haotian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Sharon Mitchell, Bert Weckhuysen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–87, Tables 1–6, Notes 1–3 and refs. 1–21.

Supplementary Video 1

Electron tomography data and reconstruction and segmented data of Ni-SAC/SBA-15.

Source data

Source Data Fig. 5

Numerical data used to generate graphs.

Source Data Fig. 6

Numerical data used to generate graphs.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZY., Zhu, P., Cullen, D.A. et al. A general synthesis of single atom catalysts with controllable atomic and mesoporous structures. Nat. Synth 1, 658–667 (2022). https://doi.org/10.1038/s44160-022-00129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00129-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing